日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

5_整体架构优化

發布時間:2024/3/13 编程问答 40 豆豆
生活随笔 收集整理的這篇文章主要介紹了 5_整体架构优化 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

基本概念

  • 分布式
    系統中的多個模塊在不同服務器上部署,即可稱為分布式系統,用戶服務、商品服務、mysql服務、redis服務。

  • 高可用
    系統中部分節點失效時,其他節點能夠接替它繼續提供服務,則可認為系統具有高可用性。

  • 集群
    一個特定領域的軟件部署在多臺服務器上并作為一個整體提供一類服務,這個整體稱為集群。如Etcd中的Master和Slave分別部署在多臺服務器上,共同組成一個整體提供集中配置服務。在常見的集群中,客戶端往往能夠連接任意一個節點獲得服務,并且當集群中一個節點掉線時,其他節點往往能夠自動的接替它繼續提供服務,這時候說明集群具有高可用性。

  • 負載均衡
    請求發送到系統時,通過某些方式把請求均勻分發到多個節點上(反向代理),使系統中每個節點能夠均勻的處理請求負載,則可認為系統是負載均衡的,比如Nginx實現負載均衡代理。

  • 正向代理

    比如我們寫代碼時需要依賴第三方的包時,但由于網絡限制等原因,無法直接訪問需要翻墻,這時候需要先連接代理服務器,然后再由代理服務器訪問目標服務器。

  • 反向代理
    反向代理是外部請求訪問系統時通過代理服務器轉發到內部服務器的過程(負載均衡)。

第一次演進:引入本地緩存和分布式緩存

演進原因:隨著用戶數的增長,并發讀寫數據庫成為瓶頸

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-ZqM2lXHU-1619404822386)(./img/1088865837-5ca031313f044_articlex.png)]

在外部增加分布式緩存,緩存熱門商品信息或熱門商品的html頁面等。通過緩存能把絕大多數請求在讀寫數據庫前攔截掉,大大降低數據庫壓力。其中涉及的技術包括:使用memcached作為本地緩存,使用Redis作為分布式緩存,還會涉及緩存一致性、緩存穿透/擊穿、緩存雪崩、熱點數據集中失效等問題。

  • 本地緩存

    緩存熱門商品的html頁面

  • 分布式緩存

    緩存熱門商品信息

  • 庫存查詢增加樂觀鎖(for update)

第二次演進:引入反向代理實現負載均衡

演進原因:緩存抗住了大部分的訪問請求,隨著用戶數的增長,并發壓力主要落在單機的Tomcat上,響應逐漸變慢

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-818rocwh-1619404822404)(img/2872647211-5c95fef4928ad_articlex.png)]

在多臺服務器上分別部署Tomcat,使用反向代理軟件(Nginx)把請求均勻分發到每個Tomcat中。其中涉及的技術包括:Nginx、HAProxy,兩者都是工作在網絡第七層的反向代理軟件,主要支持http協議,還會涉及session共享、文件上傳下載的問題。

第三次演進:數據庫讀寫分離

演進原因:反向代理使應用服務器可支持的并發量大大增加,但并發量的增長也意味著更多請求穿透到數據庫,單機的數據庫最終成為瓶頸

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-mETEfADm-1619404822405)(./img/1589885053-5c96032e3c356_articlex.png)]

把數據庫劃分為讀庫和寫庫,讀庫可以有多個,通過同步機制把寫庫的數據同步到讀庫,對于需要查詢最新寫入數據場景,可通過在緩存中多寫一份,通過緩存獲得最新數據。其中涉及的技術包括:Mycat,它是數據庫中間件,可通過它來組織數據庫的分離讀寫和分庫分表,客戶端通過它來訪問下層數據庫,還會涉及數據同步,數據一致性的問題。

第四次演進:數據庫按業務分庫

演進原因:業務逐漸變多,不同業務之間的訪問量差距較大,不同業務直接競爭數據庫,相互影響性能

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-scdznbjB-1619404822407)(img/250737400-5c9653d44e54e_articlex.png)]

把不同業務的數據保存到不同的數據庫中,使業務之間的資源競爭降低,對于訪問量大的業務,可以部署更多的服務器來支撐。這樣同時導致跨業務的表無法直接做關聯分析,需要通過其他途徑來解決。

第五次演進:把大表拆分為小表

演進原因:隨著用戶數的增長,單機的寫庫會逐漸會達到性能瓶頸

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-Uly4ZKbi-1619404822409)(./img/111902257-5c960f793734f_articlex.png)]

比如針對評論數據,可按照商品ID進行hash,路由到對應的表中存儲;針對支付記錄,可按照小時創建表,每個小時表繼續拆分為小表,使用用戶ID或記錄編號來路由數據。只要實時操作的表數據量足夠小,請求能夠足夠均勻的分發到多臺服務器上的小表,那數據庫就能通過水平擴展的方式來提高性能。其中前面提到的Mycat也支持在大表拆分為小表情況下的訪問控制。

這種做法顯著的增加了數據庫運維的難度,對DBA的要求較高。數據庫設計到這種結構時,已經可以稱為分布式數據庫,但是這只是一個邏輯的數據庫整體,數據庫里不同的組成部分是由不同的組件單獨來實現的,如分庫分表的管理和請求分發,由Mycat實現,SQL的解析由單機的數據庫實現,讀寫分離可能由網關和消息隊列來實現,查詢結果的匯總可能由數據庫接口層來實現等等,這種架構其實是MPP(大規模并行處理)架構的一類實現。

目前開源和商用都已經有不少MPP數據庫,開源中比較流行的有Greenplum、TiDB、Postgresql XC、HAWQ等,商用的如南大通用的GBase、睿帆科技的雪球DB、華為的LibrA等等,不同的MPP數據庫的側重點也不一樣,如TiDB更側重于分布式OLTP場景,Greenplum更側重于分布式OLAP場景,這些MPP數據庫基本都提供了類似Postgresql、Oracle、MySQL那樣的SQL標準支持能力,能把一個查詢解析為分布式的執行計劃分發到每臺機器上并行執行,最終由數據庫本身匯總數據進行返回,也提供了諸如權限管理、分庫分表、事務、數據副本等能力,并且大多能夠支持100個節點以上的集群,大大降低了數據庫運維的成本,并且使數據庫也能夠實現水平擴展。

無論上單機還是分布式數據庫,針對單個sql,最終只會在一個節點上執行完成,而mpp數據庫會對這個sql執行計算任務分解,靠整個集群的算力分布式調度計算,最后整體完成sql。這個可能是與分布式數據庫的差異。但分布式數據庫與mpp數據庫不是一個差異化很大的概念,技術實現上也會有很多重疊的。

第六次演進:使用LVS或F5來使多個Nginx負載均衡

演進原因:數據庫和Tomcat都能夠水平擴展,可支撐的并發大幅提高,隨著用戶數的增長,最終單機的Nginx會成為瓶頸

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-jRb0tWQV-1619404822411)(./img/1157555056-5c965af7a8de0_articlex.png)]

由于瓶頸在Nginx,因此無法通過兩層的Nginx來實現多個Nginx的負載均衡。圖中的LVS和F5是工作在網絡第四層的負載均衡解決方案,其中LVS是軟件,運行在操作系統內核態,可對TCP請求或更高層級的網絡協議進行轉發,因此支持的協議更豐富,并且性能也遠高于Nginx,可假設單機的LVS可支持幾十萬個并發的請求轉發;F5是一種負載均衡硬件,與LVS提供的能力類似,性能比LVS更高,但價格昂貴。由于LVS是單機版的軟件,若LVS所在服務器宕機則會導致整個后端系統都無法訪問,因此需要有備用節點。可使用keepalived軟件模擬出虛擬IP,然后把虛擬IP綁定到多臺LVS服務器上,瀏覽器訪問虛擬IP時,會被路由器重定向到真實的LVS服務器,當主LVS服務器宕機時,keepalived軟件會自動更新路由器中的路由表,把虛擬IP重定向到另外一臺正常的LVS服務器,從而達到LVS服務器高可用的效果。

此處需要注意的是,上圖中從Nginx層到Tomcat層這樣畫并不代表全部Nginx都轉發請求到全部的Tomcat,在實際使用時,可能會是幾個Nginx下面接一部分的Tomcat,這些Nginx之間通過keepalived實現高可用,其他的Nginx接另外的Tomcat,這樣可接入的Tomcat數量就能成倍的增加。

第七次演進:通過DNS輪詢實現機房間的負載均衡

演進原因:由于LVS也是單機的,隨著并發數增長到幾十萬時,LVS服務器最終會達到瓶頸,此時用戶數達到千萬甚至上億級別,用戶分布在不同的地區,與服務器機房距離不同,導致了訪問的延遲會明顯不同

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-6HHlVeMP-1619404822412)(./img/1896228394-5c9662ac87756_articlex.png)]

在DNS服務器中可配置一個域名對應多個IP地址,每個IP地址對應到不同的機房里的虛擬IP。當用戶訪問www.taobao.com時,DNS服務器會使用輪詢策略或其他策略,來選擇某個IP供用戶訪問。此方式能實現機房間的負載均衡,至此,系統可做到機房級別的水平擴展,千萬級到億級的并發量都可通過增加機房來解決,系統入口處的請求并發量不再是問題。

第八次演進:引入NoSQL數據庫和搜索引擎等技術

演進原因:隨著數據的豐富程度和業務的發展,檢索、分析等需求越來越豐富,單單依靠數據庫無法解決如此豐富的需求

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-zVFSw3lo-1619404822413)(./img/1190021994-5ca03c930e572_articlex.png)]

當數據庫中的數據多到一定規模時,數據庫就不適用于復雜的查詢了,往往只能滿足普通查詢的場景。對于統計報表場景,在數據量大時不一定能跑出結果,而且在跑復雜查詢時會導致其他查詢變慢,對于全文檢索、可變數據結構等場景,數據庫天生不適用。因此需要針對特定的場景,引入合適的解決方案。如對于海量文件存儲,可通過分布式文件系統HDFS解決,對于key value類型的數據,可通過HBase和Redis等方案解決,對于全文檢索場景,可通過搜索引擎如ElasticSearch解決,對于多維分析場景,可通過Kylin或Druid等方案解決。

當然,引入更多組件同時會提高系統的復雜度,不同的組件保存的數據需要同步,需要考慮一致性的問題,需要有更多的運維手段來管理這些組件等。

第九次演進:大應用拆分為小應用

演進原因:引入更多組件解決了豐富的需求,業務維度能夠極大擴充,隨之而來的是一個應用中包含了太多的業務代碼,業務的升級迭代變得困難

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-fn50jT4E-1619404822414)(./img/1992263855-5ca04d46dd717_articlex.png)]

按照業務板塊來劃分應用代碼,使單個應用的職責更清晰,相互之間可以做到獨立升級迭代。這時候應用之間可能會涉及到一些公共配置,可以通過分布式配置中心Zookeeper/etcd來解決。

第十次演進:復用的功能抽離成微服務

演進原因:不同應用之間存在共用的模塊,由應用單獨管理會導致相同代碼存在多份,導致公共功能升級時全部應用代碼都要跟著升級

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-SaYiBjpT-1619404822415)(./img/651851067-5ca04fe08f7ee_articlex.png)]

如用戶管理、訂單、支付、鑒權等功能在多個應用中都存在,那么可以把這些功能的代碼單獨抽取出來形成一個單獨的服務來管理,這樣的服務就是所謂的微服務,應用和服務之間通過HTTP、TCP或RPC請求等多種方式來訪問公共服務,每個單獨的服務都可以由單獨的團隊來管理。此外,可以通過Dubbo、SpringCloud等框架實現服務治理、限流、熔斷、降級等功能,提高服務的穩定性和可用性。

第十一次演進:引入企業服務總線ESB屏蔽服務接口的訪問差異

演進原因:不同服務的接口訪問方式不同,應用代碼需要適配多種訪問方式才能使用服務,此外,應用訪問服務,服務之間也可能相互訪問,調用鏈將會變得非常復雜,邏輯變得混亂

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-chRsIaUi-1619404822417)(./img/1162448692-5ca052a998911_articlex.png)]

通過ESB統一進行訪問協議轉換,應用統一通過ESB來訪問后端服務,服務與服務之間也通過ESB來相互調用,以此降低系統的耦合程度。這種單個應用拆分為多個應用,公共服務單獨抽取出來來管理,并使用企業消息總線來解除服務之間耦合問題的架構,就是所謂的SOA(面向服務)架構,這種架構與微服務架構容易混淆,因為表現形式十分相似。個人理解,微服務架構更多是指把系統里的公共服務抽取出來單獨運維管理的思想,而SOA架構則是指一種拆分服務并使服務接口訪問變得統一的架構思想,SOA架構中包含了微服務的思想。

第十二次演進:引入容器化技術實現運行環境隔離與動態服務管理

演進原因:業務不斷發展,應用和服務都會不斷變多,應用和服務的部署變得復雜,同一臺服務器上部署多個服務還要解決運行環境沖突的問題,此外,對于如大促這類需要動態擴縮容的場景,需要水平擴展服務的性能,就需要在新增的服務上準備運行環境,部署服務等,運維將變得十分困難

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-vGttaZgK-1619404822418)(./img/2760745238-5ca055e4b20a9_articlex.png)]

目前最流行的容器化技術是Docker,最流行的容器管理服務是Kubernetes(K8S),應用/服務可以打包為Docker鏡像,通過K8S來動態分發和部署鏡像。Docker鏡像可理解為一個能運行你的應用/服務的最小的操作系統,里面放著應用/服務的運行代碼,運行環境根據實際的需要設置好。把整個“操作系統”打包為一個鏡像后,就可以分發到需要部署相關服務的機器上,直接啟動Docker鏡像就可以把服務起起來,使服務的部署和運維變得簡單。

在大促的之前,可以在現有的機器集群上劃分出服務器來啟動Docker鏡像,增強服務的性能,大促過后就可以關閉鏡像,對機器上的其他服務不造成影響(在3.14節之前,服務運行在新增機器上需要修改系統配置來適配服務,這會導致機器上其他服務需要的運行環境被破壞)。

第十三次演進:以云平臺承載系統

演進原因:使用容器化技術后服務動態擴縮容問題得以解決,但是機器還是需要公司自身來管理,在非大促的時候,還是需要閑置著大量的機器資源來應對大促,機器自身成本和運維成本都極高,資源利用率低

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-dKB2z8xd-1619404822418)(./img/1409345676-5ca05cae06402_articlex.png)]

系統可部署到公有云上,利用公有云的海量機器資源,解決動態硬件資源的問題,在大促的時間段里,在云平臺中臨時申請更多的資源,結合Docker和K8S來快速部署服務,在大促結束后釋放資源,真正做到按需付費,資源利用率大大提高,同時大大降低了運維成本。

所謂的云平臺,就是把海量機器資源,通過統一的資源管理,抽象為一個資源整體,在之上可按需動態申請硬件資源(如CPU、內存、網絡等),并且之上提供通用的操作系統,提供常用的技術組件(如Hadoop技術棧,MPP數據庫等)供用戶使用,甚至提供開發好的應用,用戶不需要關系應用內部使用了什么技術,就能夠解決需求(如音視頻轉碼服務、郵件服務、個人博客等)。在云平臺中會涉及如下幾個概念:

  • **IaaS:**基礎設施即服務。對應于上面所說的機器資源統一為資源整體,可動態申請硬件資源的層面;
  • **PaaS:**平臺即服務。對應于上面所說的提供常用的技術組件方便系統的開發和維護;
  • **SaaS:**軟件即服務。對應于上面所說的提供開發好的應用或服務,按功能或性能要求付費。

架構設計總結

  • 架構的調整是否必須按照上述演變路徑進行?
    不是的,以上所說的架構演變順序只是針對某個側面進行單獨的改進,在實際場景中,可能同一時間會有幾個問題需要解決,或者可能先達到瓶頸的是另外的方面,這時候就應該按照實際問題實際解決。如在政府類的并發量可能不大,但業務可能很豐富的場景,高并發就不是重點解決的問題,此時優先需要的可能會是豐富需求的解決方案。

  • 服務端架構和大數據架構有什么區別?
    所謂的“大數據”其實是海量數據采集清洗轉換、數據存儲、數據分析、數據服務等場景解決方案的一個統稱,在每一個場景都包含了多種可選的技術,如數據采集有Flume、Sqoop、Kettle等,數據存儲有分布式文件系統HDFS、FastDFS,NoSQL數據庫HBase、MongoDB等,數據分析有Spark技術棧、機器學習算法等。總的來說大數據架構就是根據業務的需求,整合各種大數據組件組合而成的架構,一般會提供分布式存儲、分布式計算、多維分析、數據倉庫、機器學習算法等能力。而服務端架構更多指的是應用組織層面的架構,底層能力往往是由大數據架構來提供。

  • 有沒有一些架構設計的原則?

    • N+1設計。系統中的每個組件都應做到沒有單點故障;
    • 回滾設計。確保系統可以向前兼容,在系統升級時應能有辦法回滾版本;
    • 禁用設計。應該提供控制具體功能是否可用的配置,在系統出現故障時能夠快速下線功能;
    • 監控設計。在設計階段就要考慮監控的手段;
    • 多活數據中心設計。若系統需要極高的高可用,應考慮在多地實施數據中心進行多活,至少在一個機房斷電的情況下系統依然可用;
    • 采用成熟的技術。剛開發的或開源的技術往往存在很多隱藏的bug,出了問題沒有商業支持可能會是一個災難;
    • 資源隔離設計。應避免單一業務占用全部資源;
    • 架構應能水平擴展。系統只有做到能水平擴展,才能有效避免瓶頸問題;
    • 非核心則購買。非核心功能若需要占用大量的研發資源才能解決,則考慮購買成熟的產品;
    • 使用商用硬件。商用硬件能有效降低硬件故障的機率;
    • 快速迭代。系統應該快速開發小功能模塊,盡快上線進行驗證,早日發現問題大大降低系統交付的風險;
    • 無狀態設計。服務接口應該做成無狀態的,當前接口的訪問不依賴于接口上次訪問的狀態。

總結

以上是生活随笔為你收集整理的5_整体架构优化的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 五月天婷婷综合 | 一级片一级 | 蜜桃精品视频在线 | 91av福利视频 | 老牛影视av一区二区在线观看 | 97精品人妻麻豆一区二区 | 亚洲福利av | 日韩精品自拍偷拍 | 国产精品一区二区无码免费看片 | 人妖被c到高潮欧美gay | 女人被男人操 | 婷婷色在线视频 | 青青草网址 | 午夜精品福利一区二区三区蜜桃 | 黄色亚洲网站 | 黄色成人小视频 | 深夜激情视频 | 少妇视频在线播放 | 中文字幕av观看 | 在线观看国产91 | 国产精品自在线 | 中文字幕在线色 | 国产成人精品免费网站 | 免费看特级毛片 | 91精品播放 | 久草天堂 | 性――交――性――乱睡觉 | 99色综合 | 午夜黄色av | 杨贵妃颤抖双乳呻吟求欢小说 | 18无码粉嫩小泬无套在线观看 | 日本午夜精品 | 亚洲av无码一区二区三区dv | 91九色偷拍 | 公侵犯一区二区三区四区中文字幕 | 色小姐综合网 | 有奶水的迷人少妇 | 亚洲性免费 | 91欧美国产 | 欧美性成人| 青青青国内视频在线观看软件 | 天堂中文在线官网 | 欧美老熟 | 久久综合中文字幕 | 日韩一区二区不卡视频 | 真实的国产乱xxxx在线91 | 国产色综合天天综合网 | 直接看毛片 | 国产在线拍 | 色哟哟网站入口 | 一级黄色片在线 | 五月婷婷激情视频 | 久久中文字幕无码 | 日本在线视频一区二区 | 麻豆精品91| 在线看网站 | 久久久久久黄色片 | www.伊人| av白浆| 中文字幕一区二区三区av | 人体裸体bbbbb欣赏 | 91成人综合| 一个色av| 国产a级精品 | 国产做受入口竹菊 | 日本一区二区三区免费电影 | 爽妇网国产精品 | 免费av网址在线 | 日本深夜福利 | 91国产免费观看 | 中文在线字幕观看 | 天天操狠狠操夜夜操 | 免费黡色av| 亚洲自拍第二页 | 欧美另类videosbestsex日本 | xxsm.com| 另类天堂网 | 欧美日韩亚洲国产 | 欧美在线不卡视频 | 91成人高清 | 精品爆乳一区二区三区 | 中文字幕有码在线观看 | 国产精品久久9 | 毛片a片免费看 | 成人精品二区 | 性感av在线| 成人h动漫精品一区二区下载 | 日韩久久久久 | 国产一级久久久久毛片精品 | 亚洲综合图色40p | 国产午夜精品久久久久 | 搞黄网站在线观看 | 欧美日韩亚洲精品一区二区 | 女优一区| 九色影视| 日韩一级免费 | 欧洲免费av| 欧美一区二区不卡视频 | missav|免费高清av在线看 |