日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

【达摩院OpenVI】视频目标渐进式Transformer跟踪器ProContEXT

發布時間:2024/3/13 编程问答 42 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【达摩院OpenVI】视频目标渐进式Transformer跟踪器ProContEXT 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

論文&代碼

  • 論文鏈接:[arxiv]
  • 代碼&應用:
    • 開源代碼:[github code]
    • 開源應用:[modelscope]

背景介紹

視頻目標跟蹤(Video Object Tracking, VOT)任務以一段視頻和第一幀中待跟蹤目標的位置信息(矩形框)作為輸入,在后續視頻幀中預測該跟蹤目標的精確位置。該任務對跟蹤目標的類別沒有限制,目的在于跟蹤感興趣的目標實例。該算法在學術界和工業界都是非常重要的一個研究課題,在自動駕駛、人機交互、視頻監控領域都有廣泛應用。

由于輸入視頻的多樣性,目標跟蹤算法需要適應諸如尺度變化、形狀變化、光照變化、遮擋等諸多挑戰。特別是在待跟蹤目標外觀變化劇烈、周圍存在相似物體干擾的情況下,跟蹤算法的精度往往急劇下降,甚至出現跟蹤失敗的情況。如圖1所示,對于一個輸入視頻,待跟蹤跟蹤物體(紅色虛線圓)會隨著時間而產生劇烈變化,相比于初始幀中的目標外觀,待跟蹤幀中的目標外觀會與中間幀的目標外觀更相似,因此中間幀的目標外觀形態是一個非常好的時域上下文信息。另外,對于跟蹤過程中目標物體周圍的空域上下文信息對算法鑒別相似物體和干擾背景有很大的幫助。

方法介紹

最近,一些基于Transformer網絡的視頻目標跟蹤算法,比如OSTrack[1], MixFormer[2], STARK[3]等,展現了較高的算法精度,基于之前的研究工作,本文提出了ProContEXT(Progressive Context Encoding Transformer Tracker),把時域上下文信息和空域上下文信息共同引入到Transformer網絡中。

ProContEXT的整體結構如圖2所示,該方法具有如下的特點:

  • ProContEXT是一種漸進式上下文感知的Transformer跟蹤器,在Transfomer跟蹤器中利用了動態的時域信息和多樣的空域信息進行特征提取,從而能獲得更加魯邦的跟蹤特征。
  • ProContEXT通過改進ViT主干網絡,在輸入中增加了多尺度靜態模板(static templates)和多尺度動態模板(dynamic templates),并通過上下文感知的自注意力機制模塊充分利用視頻跟蹤過程中目標的時域上下文和空域上下文信息。通過漸進式的模板優化和更新機制,跟蹤器能快速適應目標的外觀變化。
  • ProContEXT在多個公開數據集中(TrackingNet和GOT-10k)獲得SOTA性能,并且運行效率完全達到實時要求,速度為54.3FPS.
  • 實驗結果

    本文基于TrackingNet和GOT-10k數據集進行算法實驗,完全遵守各數據集的使用準則。

    SOTA對比

    首先,與目前SOTA方法的對比如下表所示,ProContEXT在TrackingNet數據集和在GOT-10K數據集均超過對比的算法,達到SOTA精度。

    消融實驗

    本文對靜態模板數目進行了消融實驗,結果如下表所示,當使用2個靜態模板時,效果最佳。表中實驗數據說明當使用更多靜態模板數目時,會引入冗余信息,導致跟蹤效果下降。

    另外,對動態模板的數目和尺度也進行了消融實驗,結果如下表所示,當加入動態模板時,跟蹤算法精度均有提升,并且使用兩個尺度的動態模板比只使用單個尺度算法精度有進一步提升。

    最后,對于算法中使用到的令牌修剪模塊中的超參也進行了探索,實驗結果如下表所示,當參數為0.7時達到算法精度和效率的最加平衡。

    模型傳送門

    視頻跟蹤模型:

    • 視頻單目標跟蹤ProContEXT:https://modelscope.cn/models/damo/cv_vitb_video-single-object-tracking_procontext/summary
    • 視頻單目標跟蹤OSTrack:https://modelscope.cn/models/damo/cv_vitb_video-single-object-tracking_ostrack/summary
    • 視頻多目標跟蹤FairMOT:https://modelscope.cn/models/damo/cv_yolov5_video-multi-object-tracking_fairmot/summary

    檢測相關模型:

    • 實時目標檢測模型YOLOX:https://modelscope.cn/models/damo/cv_cspnet_image-object-detection_yolox/summary
    • 高精度目標檢測模型DINO:https://modelscope.cn/models/damo/cv_swinl_image-object-detection_dino/summary
    • 實時目標檢測模型DAMO-YOLO:https://modelscope.cn/models/damo/cv_tinynas_object-detection_damoyolo/summary
    • 垂直行業目標檢測模型:https://modelscope.cn/models?page=1&tasks=vision-detection-tracking%3Adomain-specific-object-detection&type=cv

    關鍵點相關模型:

    • 2D人體關鍵點檢測模型-HRNet: https://modelscope.cn/models/damo/cv_hrnetv2w32_body-2d-keypoints_image/summary
    • 2D人臉關鍵點檢測模型-MobileNet:https://modelscope.cn/models/damo/cv_mobilenet_face-2d-keypoints_alignment/summary
    • 2D手部關鍵點檢測模型-HRNet:https://modelscope.cn/models/damo/cv_hrnetw18_hand-pose-keypoints_coco-wholebody/summary
    • 3D人體關鍵點檢測模型-HDFormer:https://modelscope.cn/models/damo/cv_hdformer_body-3d-keypoints_video/summary
    • 3D人體關鍵點檢測模型-TPNet:https://modelscope.cn/models/damo/cv_canonical_body-3d-keypoints_video/summary

    智能通行模型:

    • https://modelscope.cn/models/damo/cv_ddsar_face-detection_iclr23-damofd/summary
    • https://modelscope.cn/models/damo/cv_resnet50_face-detection_retinaface/summary
    • https://modelscope.cn/models/damo/cv_resnet101_face-detection_cvpr22papermogface/summary
    • https://modelscope.cn/models/damo/cv_manual_face-detection_tinymog/summary
    • https://modelscope.cn/models/damo/cv_manual_face-detection_ulfd/summary
    • https://modelscope.cn/models/damo/cv_manual_face-detection_mtcnn/summary
    • https://modelscope.cn/models/damo/cv_resnet_face-recognition_facemask/summary
    • https://modelscope.cn/models/damo/cv_ir50_face-recognition_arcface/summary
    • https://modelscope.cn/models/damo/cv_manual_face-liveness_flir/summary
    • https://modelscope.cn/models/damo/cv_manual_face-liveness_flrgb/summary
    • https://modelscope.cn/models/damo/cv_manual_facial-landmark-confidence_flcm/summary
    • https://modelscope.cn/models/damo/cv_vgg19_facial-expression-recognition_fer/summary
    • https://modelscope.cn/models/damo/cv_resnet34_face-attribute-recognition_fairface/summary

    更多模型詳見 ModelScope 主頁。

    檢測套件開發工具

    ModelScope社區視覺檢測開發套件AdaDet已發布。

    參考文獻

    • [1] Ye B, Chang H, Ma B, et al., “Joint feature learning and relation modeling for tracking: A one-stream framework”, in ECCV 2022, pp. 341-357.
    • [2] Cui Y, Jiang C, Wang L, et al., “Mixformer: End-to-end tracking with iterative mixed attention”, in CVPR 2022, pp. 13608-13618.
    • [3] Yan B, Peng H, Fu J, et al., “Learning spatio-temporal transformer for visual tracking”, in ICCV 2021, pp. 10448-10457.

    總結

    以上是生活随笔為你收集整理的【达摩院OpenVI】视频目标渐进式Transformer跟踪器ProContEXT的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

    主站蜘蛛池模板: 亚洲av无码乱码在线观看富二代 | 国产乱子轮xxx农村 岛国久久久 | 欧美成人不卡 | 欧美美女一级片 | 爱如潮水3免费观看日本高清 | 99在线精品视频免费观看20 | 红桃视频网站 | 欧美激情一区二区三区四区 | 丰满少妇高潮一区二区 | 91视频青青草 | 999在线观看视频 | 色妞欧美 | 国产精品swag | 香蕉伊人网 | 中国农村一级片 | 日韩精品久久一区 | 中文字幕福利 | 欧美一a一片一级一片 | 欧美日韩操| 免费a级片视频 | 色噜噜在线播放 | 麻豆av一区二区三区在线观看 | 成人在线免费观看网址 | 日韩成年视频 | 日韩欧美一区在线观看 | 综合伊人av | 国产精品一区二区三区不卡 | 免费一级黄色 | 人体毛片| 国产主播在线看 | 午夜在线观看av | 伊人性视频 | 全部免费毛片 | 手机看片中文字幕 | 日本不卡一区二区三区在线观看 | 黄色欧美在线观看 | 日韩精品免费一区二区三区 | 欧美精品成人一区二区在线观看 | 香港a毛片 | 亚洲婷婷在线视频 | 国产欧美在线 | 日韩城人视频 | 久久久久久久久艹 | 在线一区av | 国产在线专区 | 欧美一区,二区 | 国产在线免费 | aa视频在线观看 | 国内自拍偷拍网 | 91精品国产99久久久久久 | 国产精品一线 | 麻豆免费观看视频 | 99精品热视频 | 成人在线播放网站 | 亚洲欧美国产精品久久久久久久 | 亚洲iv一区二区三区 | 国产精品丝袜黑色高跟 | 美女视频黄频视频大全 | 国产野外作爱视频播放 | 国产三级精品三级在线 | 久久91亚洲人成电影网站 | 欧美日韩国 | 欧美欧美欧美 | avtt国产| www视频在线观看 | 亚洲人在线播放 | 国产精品无码自拍 | 日韩精品中文在线 | 激情五月av| 黄色无遮挡网站 | 久久综合久久网 | 三上悠亚痴汉电车 | 国产三区精品 | 国产一区二区片 | 婷婷伊人五月天 | 日韩特黄 | av手机在线观看 | 色呦呦 | 国产午夜精品一区二区三区欧美 | 国产精伦 | 亚洲精品无码久久 | 亚欧色视频 | 精品国产欧美 | 精品国产亚洲一区二区麻豆 | 国产男男gay网站 | 乌克兰极品av女神 | 91精品久久久久久 | 欧美国产一区二区在线观看 | 综合激情婷婷 | 色视频免费 | 亚洲欧美在线视频免费 | 日韩综合另类 | 怡红院综合网 | 精品午夜一区二区三区在线观看 | 成年黄色网 | 快灬快灬一下爽69 | 亚洲av无码一区二区三区在线播放 | 午夜精品久久久久久久久 | 美女视频三区 |