日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

2-神经网络起源-demo3-共享单车__小批量多隐藏层_答案

發布時間:2024/3/26 编程问答 36 豆豆
生活随笔 收集整理的這篇文章主要介紹了 2-神经网络起源-demo3-共享单车__小批量多隐藏层_答案 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
import numpy as np import pandas as pd import matplotlib.pyplot as plt# 解決pd中print中間省略的問題 pd.set_option('display.max_columns', 1000) pd.set_option('display.width', 1000) pd.set_option('display.max_colwidth', 1000)# 讀取數據 data_path = './Bike-Sharing-Dataset/hour.csv' rides = pd.read_csv(data_path)def f1():print(rides.head())print(rides.describe())rides.info()def f2(rides):"""# 一、季節、天氣(分類變量)、月份、小時、星期幾都是分類變量,需要調整為啞變量。"""dummy_fields = ['season', 'weathersit', 'mnth', 'hr', 'weekday']for each in dummy_fields:dummies = pd.get_dummies(rides[each], prefix=each, drop_first=False)rides = pd.concat([rides, dummies], axis=1)"""二、除了將 上面的原變量,還有以下變量需要刪除,思考下why?1、instant 記錄索引號;2、dteday 具體某天的日期號;3、atemp 體感溫度,和temp重復,故刪除;4、workingday 是否工作日,和weekday重復了,故刪除;"""fields_to_drop = ['instant', 'dteday', 'season', 'weathersit','weekday', 'atemp', 'mnth', 'workingday', 'hr']data = rides.drop(fields_to_drop, axis=1)print(data.head())# rides[:24 * 10].plot(x='dteday', y='cnt')# plt.show()return datadef f3(data):"""連續變量的數據標準化注意:cnt 就是target"""quant_features = ['casual', 'registered', 'cnt', 'temp', 'hum', 'windspeed']# 將換算因子進行保存,以便在預測的時候還原數據。scaled_features = {}for each in quant_features:mean, std = data[each].mean(), data[each].std()scaled_features[each] = [mean, std]data.loc[:, each] = (data[each] - mean) / stdreturn data, scaled_featuresdef f4(data):"""拆分數據集,拆分 特征 和 target"""# 保存最后21天 作為測試數據集test_data = data[-21 * 24:]# 移除最后21天數據,作為訓練數據集data = data[:-21 * 24]# 將特征值 和 target進行拆分target_fields = ['cnt', 'casual', 'registered']features, targets = data.drop(target_fields, axis=1), data[target_fields]test_features, test_targets = test_data.drop(target_fields, axis=1), test_data[target_fields]return features, targets, test_features, test_targetsdef f5(features , targets):"""使用訓練數據集的后60天數據,作為驗證數據集;在模型訓練過程中進行驗證模型的效果。"""train_features, train_targets = features[:-60 * 24], targets[:-60 * 24]val_features, val_targets = features[-60 * 24:], targets[-60 * 24:]return train_features, train_targets, val_features, val_targetsclass NeuralNetworkMultiHidden(object):def __init__(self, input_nodes, hidden_nodes1, hidden_nodes2, output_nodes, learning_rate,keep_prob=0.75, batch_size=128):""":param input_nodes: 輸入的節點數量 (特征數量):param hidden_nodes: 隱藏層節點數量:param output_nodes: 輸出層節點數量:param learning_rate:"""# Set number of nodes in input, hidden and output layers.self.input_nodes = input_nodesself.hidden_nodes1 = hidden_nodes1self.hidden_nodes2 = hidden_nodes2self.output_nodes = output_nodesself.batch_size = batch_sizeself.lr = learning_rateself.keep_prob = keep_prob# 初始化權重self.weights_input_to_h1 = np.random.normal(0.0, 1/self.input_nodes ** -0.5, size=(self.input_nodes, self.hidden_nodes1))self.weights_h1_to_h2 = np.random.normal(0.0, 1/self.hidden_nodes1 ** -0.5, size=(self.hidden_nodes1, self.hidden_nodes2))self.weights_h2_to_output = np.random.normal(0.0, 1/self.hidden_nodes2 ** -0.5, size=(self.hidden_nodes2, self.output_nodes))self.lr = learning_rate# TODO: 設置 self.activation_function 來部署 sigmoid 函數self.activation_function = lambda x: 1/(1+np.exp(-x))def get_batches(self, features, targets):assert len(features) == len(targets)for i in range(0, len(features), self.batch_size):yield features[i: i+self.batch_size], targets[i: i+self.batch_size]def drop_out(self, x):"""實現dropout函數:param x::return:"""keep_prob = (np.random.rand(*x.shape) < self.keep_prob) / self.keep_probreturn keep_probdef train_batch(self, features, targets):"""MBGD的實現:param features::param targets::return:"""for batch_x, batch_y in self.get_batches(features, targets):# 1、正向傳播# TODO: 隱藏層h1_inputs = np.matmul(batch_x, self.weights_input_to_h1)h1_outputs = self.activation_function(h1_inputs)h1_outputs = h1_outputs * self.drop_out(h1_outputs)h2_inputs = np.matmul(h1_outputs, self.weights_h1_to_h2)h2_outputs = self.activation_function(h2_inputs)h2_outputs = h2_outputs * self.drop_out(h2_outputs)# TODO: 輸出層final_inputs = np.matmul(h2_outputs, self.weights_h2_to_output)y_hat = final_inputs# 二、反向傳播# 1\Output errorerror = y_hat - batch_y.reshape([-1, 1]) # [batch, 1]# 2: 計算隱藏層對誤差error的貢獻output_error_term = error * 1# 3、 計算 h2 to output權重的梯度delta_h2_to_output = np.matmul(np.transpose(h2_outputs), output_error_term) / self.batch_size# 4、h2 隱藏層誤差項h2_error_term = np.matmul(output_error_term, self.weights_h2_to_output.transpose()) * h2_outputs * (1-h2_outputs)# 5\ h1 to h2權重的梯度值delta_h1_to_h2 = np.matmul(np.transpose(h1_outputs), h2_error_term) / self.batch_size# 6、求 h1隱藏層誤差項h1_error_term = np.matmul(h2_error_term, self.weights_h1_to_h2.transpose()) * h1_outputs*(1-h1_outputs)# 7、求input to h1權重的梯度delta_input_to_h1 = np.matmul(np.transpose(batch_x), h1_error_term) / self.batch_size# 8執行梯度下降self.weights_input_to_h1 -= delta_input_to_h1 * self.lrself.weights_h1_to_h2 -= delta_h1_to_h2 * self.lrself.weights_h2_to_output -= delta_h2_to_output * self.lrdef run(self, features):'''預測函數。使用輸入特征,執行1次正向傳播,得到預測值features: 1D array of feature values'''# 1、正向傳播# TODO: 隱藏層h1_inputs = np.matmul(features.values, self.weights_input_to_h1)h1_outputs = self.activation_function(h1_inputs)h2_inputs = np.matmul(h1_outputs, self.weights_h1_to_h2)h2_outputs = self.activation_function(h2_inputs)# TODO: 輸出層final_inputs = np.matmul(h2_outputs, self.weights_h2_to_output)y_hat = final_inputsreturn y_hatdef MSE(y, Y):return np.mean((y-Y)**2)# 顯示訓練過程中的訓練 和 驗證損失 def show(losses):plt.plot(losses['train'], label='Training loss')plt.plot(losses['validation'], label='Validation loss')plt.legend()_ = plt.ylim()plt.show()def test(network,scaled_features, test_features, test_targets, rides):fig, ax = plt.subplots(figsize=(8, 4))mean, std = scaled_features['cnt']predictions = network.run(test_features).T * std + meanax.plot(predictions[0], label='Prediction')ax.plot((test_targets['cnt'] * std + mean).values, label='Data')ax.set_xlim(right=len(predictions))ax.legend()dates = pd.to_datetime(rides.iloc[test_features.index]['dteday'])dates = dates.apply(lambda d: d.strftime('%b %d'))ax.set_xticks(np.arange(len(dates))[12::24])_ = ax.set_xticklabels(dates[12::24], rotation=45)plt.show()if __name__ == '__main__':# f1()data = f2(rides)data, scaled_features = f3(data)features, targets, test_features, test_targets = f4(data)train_features, train_targets, val_features, val_targets = f5(features, targets)# todo 設置超參數 ###epochs = 3000 # 迭代次數learning_rate = 0.1 # 學習率hidden_nodes1 = 8 # 隱藏層節點數量,決定你模型的復雜度。hidden_nodes2 = 7output_nodes = 1 # 輸出層的節點數量。batch_size = 256keep_prob = 0.8input_nodes = train_features.shape[1]network = NeuralNetworkMultiHidden(input_nodes, hidden_nodes1, hidden_nodes2, output_nodes,learning_rate, keep_prob=keep_prob, batch_size=batch_size)losses = {'train': [], 'validation': []}for epoch in range(epochs):network.train_batch(train_features.values, train_targets['cnt'].values)# 打印出訓練過程train_loss = MSE(network.run(train_features).T, train_targets['cnt'].values)val_loss = MSE(network.run(val_features).T, val_targets['cnt'].values)if epoch % 20 == 0:print('訓練迭代次數:{},訓練損失:{} ,驗證損失:''{}'.format(epoch, train_loss, val_loss))losses['train'].append(train_loss)losses['validation'].append(val_loss)show(losses)test(network, scaled_features, test_features, test_targets, rides) D:\Anaconda\python.exe "D:\PyCharm\PyCharm 2018.2.2\helpers\pydev\pydevconsole.py" 54140 54141 import sys; print('Python %s on %s' % (sys.version, sys.platform)) sys.path.extend(['D:\\AI20\\HJZ', 'D:/AI20/HJZ']) Python 3.6.5 |Anaconda, Inc.| (default, Mar 29 2018, 13:32:41) [MSC v.1900 64 bit (AMD64)] Type 'copyright', 'credits' or 'license' for more information IPython 6.4.0 -- An enhanced Interactive Python. Type '?' for help. PyDev console: using IPython 6.4.0 Python 3.6.5 |Anaconda, Inc.| (default, Mar 29 2018, 13:32:41) [MSC v.1900 64 bit (AMD64)] on win32 runfile('D:/AI20/HJZ/04-深度學習/1-深度學習入門/深度學習項目/AI20_單車__小批量多隱藏層_答案.py', wdir='D:/AI20/HJZ/04-深度學習/1-深度學習入門/深度學習項目')yr holiday temp hum windspeed casual registered cnt season_1 season_2 season_3 season_4 weathersit_1 weathersit_2 weathersit_3 weathersit_4 mnth_1 mnth_2 mnth_3 mnth_4 mnth_5 mnth_6 mnth_7 mnth_8 mnth_9 mnth_10 mnth_11 mnth_12 hr_0 hr_1 hr_2 hr_3 hr_4 hr_5 hr_6 hr_7 hr_8 hr_9 hr_10 hr_11 hr_12 hr_13 hr_14 hr_15 hr_16 hr_17 hr_18 hr_19 hr_20 hr_21 hr_22 hr_23 weekday_0 weekday_1 weekday_2 weekday_3 weekday_4 weekday_5 weekday_6 0 0 0 0.24 0.81 0.0 3 13 16 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0.22 0.80 0.0 8 32 40 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0.22 0.80 0.0 5 27 32 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 0.24 0.75 0.0 3 10 13 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 0 0 0.24 0.75 0.0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 訓練迭代次數:0,訓練損失:1.4049598343209766 ,驗證損失:1.4134166663142764 訓練迭代次數:20,訓練損失:1.191033061166735 ,驗證損失:1.2931418136345434 訓練迭代次數:40,訓練損失:1.1984009623831025 ,驗證損失:1.2920684294502167 訓練迭代次數:60,訓練損失:1.2128614744725161 ,驗證損失:1.2890902536743876 訓練迭代次數:80,訓練損失:1.1920010882383159 ,驗證損失:1.2781289512063165 訓練迭代次數:100,訓練損失:1.2006819864036042 ,驗證損失:1.2669214154589938 訓練迭代次數:120,訓練損失:1.201754896935542 ,驗證損失:1.2543690660827465 訓練迭代次數:140,訓練損失:1.191243393043961 ,驗證損失:1.2386061002917468 訓練迭代次數:160,訓練損失:1.1663420353206133 ,驗證損失:1.2133403530787898 訓練迭代次數:180,訓練損失:1.1854967589152083 ,驗證損失:1.2038260345349165 訓練迭代次數:200,訓練損失:1.1795672537011166 ,驗證損失:1.1823249575128574 訓練迭代次數:220,訓練損失:1.1682780833044055 ,驗證損失:1.1699543809357753 訓練迭代次數:240,訓練損失:1.1636495190832759 ,驗證損失:1.153493583812518 訓練迭代次數:260,訓練損失:1.1683817941847439 ,驗證損失:1.1530397929143232 訓練迭代次數:280,訓練損失:1.1704024692290609 ,驗證損失:1.1463094551941384 訓練迭代次數:300,訓練損失:1.167836729294609 ,驗證損失:1.1380138358655458 訓練迭代次數:320,訓練損失:1.152206893299751 ,驗證損失:1.1268447929175738 訓練迭代次數:340,訓練損失:1.1398153088544771 ,驗證損失:1.1141464353215857 訓練迭代次數:360,訓練損失:1.1399555109674233 ,驗證損失:1.1173589548792964 訓練迭代次數:380,訓練損失:1.1339803999528923 ,驗證損失:1.1058483596575561 訓練迭代次數:400,訓練損失:1.127499637809135 ,驗證損失:1.0943699867988634 訓練迭代次數:420,訓練損失:1.130508289149735 ,驗證損失:1.094848660480854 訓練迭代次數:440,訓練損失:1.1226987785233933 ,驗證損失:1.0868869679815947 訓練迭代次數:460,訓練損失:1.1124556323539798 ,驗證損失:1.0880393700260946 訓練迭代次數:480,訓練損失:1.0947664417341665 ,驗證損失:1.0822969246723875 訓練迭代次數:500,訓練損失:1.102019574807323 ,驗證損失:1.0785993278226347 訓練迭代次數:520,訓練損失:1.0756653061870864 ,驗證損失:1.0739512911587645 訓練迭代次數:540,訓練損失:1.0848392163051497 ,驗證損失:1.071863377072026 訓練迭代次數:560,訓練損失:1.0726029326883686 ,驗證損失:1.0662775420905442 訓練迭代次數:580,訓練損失:1.0573534852202195 ,驗證損失:1.0714235515825197 訓練迭代次數:600,訓練損失:1.0383465103374563 ,驗證損失:1.061587838801731 訓練迭代次數:620,訓練損失:1.025923333984107 ,驗證損失:1.0653288968309416 訓練迭代次數:640,訓練損失:1.0369456811847073 ,驗證損失:1.0713373240243294 訓練迭代次數:660,訓練損失:1.0364001667139042 ,驗證損失:1.0640935566218894 訓練迭代次數:680,訓練損失:1.0400004910395533 ,驗證損失:1.065681599324164 訓練迭代次數:700,訓練損失:1.050995284262165 ,驗證損失:1.0647670884860212 訓練迭代次數:720,訓練損失:1.018940240035332 ,驗證損失:1.059287874059955 訓練迭代次數:740,訓練損失:1.0363819632576774 ,驗證損失:1.066276341690848 訓練迭代次數:760,訓練損失:1.028426813397832 ,驗證損失:1.0623961167773956 訓練迭代次數:780,訓練損失:1.0189745034921762 ,驗證損失:1.0624564548702664 訓練迭代次數:800,訓練損失:1.0535661337931692 ,驗證損失:1.0668193865406113 訓練迭代次數:820,訓練損失:1.0266509285859535 ,驗證損失:1.068206513591057 訓練迭代次數:840,訓練損失:1.0331621655804455 ,驗證損失:1.0726722273363603 訓練迭代次數:860,訓練損失:1.0251174045688107 ,驗證損失:1.0654138978355179 訓練迭代次數:880,訓練損失:1.0304148623045695 ,驗證損失:1.0656984457855712 訓練迭代次數:900,訓練損失:1.024423315282759 ,驗證損失:1.0700745167114185 訓練迭代次數:920,訓練損失:1.032328343800837 ,驗證損失:1.0624130680251542 訓練迭代次數:940,訓練損失:1.0283687484682102 ,驗證損失:1.0773623767903766 訓練迭代次數:960,訓練損失:1.0134267116061493 ,驗證損失:1.074257335227338 訓練迭代次數:980,訓練損失:1.0110943715100067 ,驗證損失:1.0785358764065802 訓練迭代次數:1000,訓練損失:1.0137399554429194 ,驗證損失:1.0891244094584875 訓練迭代次數:1020,訓練損失:0.9976091453098368 ,驗證損失:1.1036601448902938 訓練迭代次數:1040,訓練損失:1.0025455852046654 ,驗證損失:1.1078044097173811 訓練迭代次數:1060,訓練損失:0.9971201783057869 ,驗證損失:1.1097782177478874 訓練迭代次數:1080,訓練損失:1.0077135024045787 ,驗證損失:1.1171342596149176 訓練迭代次數:1100,訓練損失:0.989435521338311 ,驗證損失:1.1163947695415941 訓練迭代次數:1120,訓練損失:1.0046778115903863 ,驗證損失:1.116652012791937 訓練迭代次數:1140,訓練損失:0.9890504798273926 ,驗證損失:1.116016089697368 訓練迭代次數:1160,訓練損失:0.9843516216949189 ,驗證損失:1.1052671666140421 訓練迭代次數:1180,訓練損失:1.0064311979803187 ,驗證損失:1.1049940415771407 訓練迭代次數:1200,訓練損失:0.998841749230865 ,驗證損失:1.0985993017086981 訓練迭代次數:1220,訓練損失:0.9862143891130666 ,驗證損失:1.0903739899913933 訓練迭代次數:1240,訓練損失:0.9810610274347947 ,驗證損失:1.0885378134649732 訓練迭代次數:1260,訓練損失:0.9792300562416918 ,驗證損失:1.077161582076293 訓練迭代次數:1280,訓練損失:0.9760627779270655 ,驗證損失:1.0730553186056613 訓練迭代次數:1300,訓練損失:0.967982277710496 ,驗證損失:1.0630035815717724 訓練迭代次數:1320,訓練損失:0.9717968522519344 ,驗證損失:1.053997539353016 訓練迭代次數:1340,訓練損失:0.9743654642216101 ,驗證損失:1.0558319503303484 訓練迭代次數:1360,訓練損失:0.9680533949739022 ,驗證損失:1.0506383794413203 訓練迭代次數:1380,訓練損失:0.9709026169373867 ,驗證損失:1.0532973030862018 訓練迭代次數:1400,訓練損失:0.974128474316653 ,驗證損失:1.0498922921766818 訓練迭代次數:1420,訓練損失:0.9785149046759605 ,驗證損失:1.0408913252615668 訓練迭代次數:1440,訓練損失:0.9537413724379682 ,驗證損失:1.0381164051752785 訓練迭代次數:1460,訓練損失:0.965637541159986 ,驗證損失:1.035939389690247 訓練迭代次數:1480,訓練損失:0.9795617178366891 ,驗證損失:1.0330948779622118 訓練迭代次數:1500,訓練損失:0.9830199380134964 ,驗證損失:1.023296422546772 訓練迭代次數:1520,訓練損失:0.9718277653587923 ,驗證損失:1.02374833235857 訓練迭代次數:1540,訓練損失:0.9871744709311929 ,驗證損失:1.0181642903151176 訓練迭代次數:1560,訓練損失:0.9645553513132961 ,驗證損失:1.014631074593417 訓練迭代次數:1580,訓練損失:0.95745665627693 ,驗證損失:1.011575426466816 訓練迭代次數:1600,訓練損失:0.9891756647749831 ,驗證損失:1.0059939313593158 訓練迭代次數:1620,訓練損失:0.9736988068828757 ,驗證損失:1.0091536385132531 訓練迭代次數:1640,訓練損失:0.9960204223543437 ,驗證損失:1.0033607875054935 訓練迭代次數:1660,訓練損失:0.9854556298410954 ,驗證損失:1.0002568588738163 訓練迭代次數:1680,訓練損失:0.9830104575963702 ,驗證損失:1.0005752641230383 訓練迭代次數:1700,訓練損失:0.9937353633299877 ,驗證損失:0.9981942073966672 訓練迭代次數:1720,訓練損失:0.9930644015954275 ,驗證損失:0.994249323972036 訓練迭代次數:1740,訓練損失:0.9921303783625928 ,驗證損失:0.9930527726071848 訓練迭代次數:1760,訓練損失:1.0012668782395846 ,驗證損失:0.9936678586296049 訓練迭代次數:1780,訓練損失:1.0046846570351382 ,驗證損失:0.9904557116907274 訓練迭代次數:1800,訓練損失:0.9753986592440668 ,驗證損失:0.9858319854643595 訓練迭代次數:1820,訓練損失:0.9862383235682017 ,驗證損失:0.9807620309667786 訓練迭代次數:1840,訓練損失:0.997360058261536 ,驗證損失:0.9883861735630757 訓練迭代次數:1860,訓練損失:0.993343092045557 ,驗證損失:0.9859186058806008 訓練迭代次數:1880,訓練損失:0.9996648339110443 ,驗證損失:0.9836449063128594 訓練迭代次數:1900,訓練損失:0.9890779499154683 ,驗證損失:0.988435019455184 訓練迭代次數:1920,訓練損失:0.9936278333526469 ,驗證損失:0.9842544956102532 訓練迭代次數:1940,訓練損失:0.983567206487514 ,驗證損失:0.9860559344032238 訓練迭代次數:1960,訓練損失:0.9886528359516243 ,驗證損失:0.9860672916553115 訓練迭代次數:1980,訓練損失:1.0003637487457928 ,驗證損失:0.987138283627506 訓練迭代次數:2000,訓練損失:1.0123710735183136 ,驗證損失:0.9902226985469503 訓練迭代次數:2020,訓練損失:0.9904608835359283 ,驗證損失:0.9854193298272445 訓練迭代次數:2040,訓練損失:1.0054704041102138 ,驗證損失:0.9874762958896658 訓練迭代次數:2060,訓練損失:1.027581260124156 ,驗證損失:0.991672992135386 訓練迭代次數:2080,訓練損失:0.989565406914043 ,驗證損失:0.984916443161018 訓練迭代次數:2100,訓練損失:1.0084468607171728 ,驗證損失:0.9886431169322287 訓練迭代次數:2120,訓練損失:0.9942951112223293 ,驗證損失:0.9838803991380857 訓練迭代次數:2140,訓練損失:1.005621205659498 ,驗證損失:0.9826214487037916 訓練迭代次數:2160,訓練損失:0.9970232280450297 ,驗證損失:0.9811441899587124 訓練迭代次數:2180,訓練損失:1.0109055419085602 ,驗證損失:0.9817208963062901 訓練迭代次數:2200,訓練損失:0.9998017953503151 ,驗證損失:0.9802820253130723 訓練迭代次數:2220,訓練損失:0.9983370483596552 ,驗證損失:0.979627235574009 訓練迭代次數:2240,訓練損失:1.0094413724929017 ,驗證損失:0.9841338397252996 訓練迭代次數:2260,訓練損失:1.005974330859626 ,驗證損失:0.9818251741135302 訓練迭代次數:2280,訓練損失:1.0142675598363247 ,驗證損失:0.9837754496291757 訓練迭代次數:2300,訓練損失:1.0127720127438498 ,驗證損失:0.9828429365857131 訓練迭代次數:2320,訓練損失:1.0104569904204563 ,驗證損失:0.9800861853389657 訓練迭代次數:2340,訓練損失:1.0093547783740506 ,驗證損失:0.977398843006523 訓練迭代次數:2360,訓練損失:1.0110058263991355 ,驗證損失:0.9815249536367491 訓練迭代次數:2380,訓練損失:1.0157069324371437 ,驗證損失:0.9824352086252541 訓練迭代次數:2400,訓練損失:1.0069441529695864 ,驗證損失:0.9802546909219414 訓練迭代次數:2420,訓練損失:0.998629288979768 ,驗證損失:0.9757994016194351 訓練迭代次數:2440,訓練損失:1.0264442542787664 ,驗證損失:0.9789124302218697 訓練迭代次數:2460,訓練損失:0.9858533087585518 ,驗證損失:0.9753708653306028 訓練迭代次數:2480,訓練損失:1.0149051626536327 ,驗證損失:0.9792163908030725 訓練迭代次數:2500,訓練損失:1.0257094713748163 ,驗證損失:0.9790813165266272 訓練迭代次數:2520,訓練損失:1.0064263925393622 ,驗證損失:0.9716495650211158 訓練迭代次數:2540,訓練損失:1.0074456081753316 ,驗證損失:0.9713535169777512 訓練迭代次數:2560,訓練損失:1.0045156753470388 ,驗證損失:0.9722775864599293 訓練迭代次數:2580,訓練損失:1.0116777234135117 ,驗證損失:0.9734898859818268 訓練迭代次數:2600,訓練損失:1.008474365142438 ,驗證損失:0.9676925039978643 訓練迭代次數:2620,訓練損失:1.0155960298865223 ,驗證損失:0.9713532357071608 訓練迭代次數:2640,訓練損失:1.042803244913576 ,驗證損失:0.9750837335994059 訓練迭代次數:2660,訓練損失:1.027546771694612 ,驗證損失:0.9724091714158932 訓練迭代次數:2680,訓練損失:1.0336935638889095 ,驗證損失:0.9719282835539361 訓練迭代次數:2700,訓練損失:1.0092632145747278 ,驗證損失:0.9717977290574962 訓練迭代次數:2720,訓練損失:1.0271627014773743 ,驗證損失:0.9742688881038355 訓練迭代次數:2740,訓練損失:1.0137922202722167 ,驗證損失:0.9750051808328831 訓練迭代次數:2760,訓練損失:1.0057584026865223 ,驗證損失:0.9726964652883073 訓練迭代次數:2780,訓練損失:1.0033088589710482 ,驗證損失:0.9700467223899546 訓練迭代次數:2800,訓練損失:1.006040099471596 ,驗證損失:0.9738564921842755 訓練迭代次數:2820,訓練損失:1.011735558239328 ,驗證損失:0.9783865020181645 訓練迭代次數:2840,訓練損失:0.9833877463044207 ,驗證損失:0.9769258604374474 訓練迭代次數:2860,訓練損失:1.027951700601824 ,驗證損失:0.9849864397762739 訓練迭代次數:2880,訓練損失:1.0417753524731448 ,驗證損失:0.9869484745302265 訓練迭代次數:2900,訓練損失:1.0116816678915919 ,驗證損失:0.9849301034760884 訓練迭代次數:2920,訓練損失:1.0111170503145037 ,驗證損失:0.9858138725738876 訓練迭代次數:2940,訓練損失:1.0329653851686955 ,驗證損失:0.9948427598844941 訓練迭代次數:2960,訓練損失:1.0149997393003969 ,驗證損失:0.9955813486192334 訓練迭代次數:2980,訓練損失:1.0111855326181511 ,驗證損失:0.9933412663413201

如果報錯test:
maybe運行得是pythontest
pycharm,默認運行單元是pythontest
而不是python
解決pytest運行問題


總結

以上是生活随笔為你收集整理的2-神经网络起源-demo3-共享单车__小批量多隐藏层_答案的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。