日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

softmax实现cifar10分类

發布時間:2024/4/15 编程问答 33 豆豆
生活随笔 收集整理的這篇文章主要介紹了 softmax实现cifar10分类 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

?將cifar10改成單一通道后,套用前面的softmax分類,分類率40%左右,想哭。。。

?

?

In?[1]: %matplotlib inline from mxnet.gluon import data as gdata from mxnet import autograd,nd import gluonbook as gb import sys In?[2]: cifar_train = gdata.vision.CIFAR10(train=True) cifar_test = gdata.vision.CIFAR10(train=False) In?[3]: (len(cifar_train),len(cifar_test)) Out[3]: (50000, 10000) In?[4]: feature,label = cifar_train[0] In?[5]: feature.shape,feature.dtype Out[5]: ((32, 32, 3), numpy.uint8) In?[6]: label,type(label),label.dtype Out[6]: (6, numpy.int32, dtype('int32')) In?[7]: batch_size = 256 transformer = gdata.vision.transforms.ToTensor() In?[8]: if sys.platform.startswith('win'):num_workers = 0 # 0 表示不用額外的進程來加速讀取數據。 else:num_workers = 4train_iter = gdata.DataLoader(cifar_train.transform_first(transformer),batch_size, shuffle=True,num_workers=num_workers) test_iter = gdata.DataLoader(cifar_test.transform_first(transformer),batch_size, shuffle=False,num_workers=num_workers) In?[9]: len(train_iter) Out[9]: 196 In?[10]: for X,y in train_iter:print(X)break [[[[0.3137255 0.3019608 0.34509805 ... 0.2901961 0.30196080.34901962][0.36078432 0.35686275 0.32941177 ... 0.23137255 0.25098040.3764706 ][0.34509805 0.42352942 0.47058824 ... 0.1882353 0.196078430.3254902 ]...[0.7529412 0.654902 0.5882353 ... 0.67058825 0.66274510.78039217][0.72156864 0.60784316 0.5764706 ... 0.63529414 0.635294140.7372549 ][0.65882355 0.6117647 0.6039216 ... 0.67058825 0.66274510.6901961 ]][[0.3137255 0.28627452 0.3137255 ... 0.28627452 0.298039230.34509805][0.36078432 0.34117648 0.3019608 ... 0.22745098 0.247058820.37254903][0.34509805 0.40392157 0.44313726 ... 0.18431373 0.192156870.32156864]...[0.8039216 0.7058824 0.6431373 ... 0.7019608 0.698039230.8156863 ][0.7764706 0.6627451 0.6313726 ... 0.6666667 0.66666670.7764706 ][0.7176471 0.6666667 0.65882355 ... 0.7019608 0.698039230.7254902 ]][[0.21960784 0.2 0.23137255 ... 0.21176471 0.219607840.26666668][0.26666668 0.2509804 0.21960784 ... 0.14901961 0.168627460.29411766][0.2509804 0.31764707 0.36078432 ... 0.10588235 0.113725490.24313726]...[0.6039216 0.5058824 0.4392157 ... 0.49803922 0.482352940.5882353 ][0.5764706 0.4627451 0.43137255 ... 0.46666667 0.46274510.5529412 ][0.5137255 0.46666667 0.45882353 ... 0.5137255 0.498039220.5137255 ]]][[[0.14901961 0.14901961 0.15294118 ... 0.14509805 0.094117650.23137255][0.15686275 0.15686275 0.16078432 ... 0.15686275 0.113725490.2509804 ][0.16078432 0.16470589 0.16862746 ... 0.16862746 0.129411770.2627451 ]...[0.16862746 0.12156863 0.14901961 ... 0.30588236 0.423529420.24313726][0.16862746 0.1254902 0.13333334 ... 0.28235295 0.396078440.22352941][0.16470589 0.1254902 0.09411765 ... 0.19607843 0.294117660.16862746]][[0.15294118 0.15294118 0.15686275 ... 0.15294118 0.098039220.23529412][0.16078432 0.16078432 0.16470589 ... 0.16470589 0.117647060.25490198][0.16470589 0.16862746 0.17254902 ... 0.1764706 0.137254910.27058825]...[0.17254902 0.1254902 0.14901961 ... 0.23137255 0.30196080.19607843][0.16862746 0.1254902 0.13333334 ... 0.22745098 0.286274520.18039216][0.16862746 0.12941177 0.09411765 ... 0.1764706 0.247058820.14901961]][[0.13333334 0.13333334 0.13725491 ... 0.15686275 0.090196080.21568628][0.14117648 0.14117648 0.14509805 ... 0.16862746 0.109803920.23529412][0.14509805 0.14901961 0.15294118 ... 0.18039216 0.12549020.24705882]...[0.14901961 0.10980392 0.13333334 ... 0.17254902 0.219607840.15686275][0.14901961 0.11372549 0.12156863 ... 0.18431373 0.203921570.13333334][0.14901961 0.11372549 0.08627451 ... 0.16078432 0.211764710.1254902 ]]][[[0.07843138 0.08627451 0.10196079 ... 0.0627451 0.054901960.04705882][0.10980392 0.08627451 0.11764706 ... 0.06666667 0.054901960.04705882][0.09019608 0.07058824 0.09411765 ... 0.05882353 0.058823530.04705882]...[0.18039216 0.16862746 0.1882353 ... 0.13725491 0.137254910.13333334][0.14901961 0.15294118 0.16470589 ... 0.14901961 0.129411770.12156863][0.13725491 0.14117648 0.15686275 ... 0.13725491 0.121568630.11764706]][[0.08627451 0.09411765 0.10980392 ... 0.07058824 0.06274510.05490196][0.12156863 0.09411765 0.1254902 ... 0.07450981 0.06274510.05490196][0.10588235 0.08235294 0.10196079 ... 0.06666667 0.066666670.05490196]...[0.19607843 0.1882353 0.2 ... 0.15294118 0.152941180.14509805][0.16470589 0.17254902 0.1764706 ... 0.16078432 0.141176480.13333334][0.15294118 0.16078432 0.16862746 ... 0.14901961 0.133333340.12941177]][[0.07058824 0.07843138 0.09019608 ... 0.05882353 0.050980390.05098039][0.10980392 0.07450981 0.10588235 ... 0.0627451 0.054901960.05098039][0.08627451 0.05882353 0.08627451 ... 0.05490196 0.054901960.04705882]...[0.16078432 0.14901961 0.16862746 ... 0.1254902 0.12549020.12156863][0.12941177 0.13333334 0.14117648 ... 0.13333334 0.113725490.10588235][0.11764706 0.1254902 0.13333334 ... 0.12156863 0.105882350.10196079]]]...[[[0.20784314 0.36078432 0.85490197 ... 0.972549 0.96470590.96862745][0.22745098 0.35686275 0.827451 ... 0.9764706 0.968627450.9647059 ][0.3372549 0.5019608 0.90588236 ... 0.9764706 0.97647060.9647059 ]...[0.08627451 0.08627451 0.05098039 ... 0.15294118 0.109803920.09803922][0.14901961 0.09411765 0.05098039 ... 0.10980392 0.184313730.2784314 ][0.3882353 0.27058825 0.14117648 ... 0.07058824 0.117647060.16470589]][[0.09803922 0.24705882 0.8156863 ... 0.9411765 0.92549020.91764706][0.14509805 0.25882354 0.7882353 ... 0.9372549 0.92549020.8980392 ][0.2784314 0.43137255 0.88235295 ... 0.9372549 0.94117650.92941177]...[0.06666667 0.07450981 0.05098039 ... 0.13725491 0.094117650.08235294][0.14117648 0.09019608 0.05098039 ... 0.09803922 0.172549020.26666668][0.3882353 0.27450982 0.14117648 ... 0.0627451 0.109803920.15686275]][[0.10588235 0.26666668 0.827451 ... 0.9607843 0.94117650.92156863][0.14117648 0.28627452 0.8156863 ... 0.94509804 0.94117650.9254902 ][0.27450982 0.4392157 0.88235295 ... 0.9254902 0.94901960.96862745]...[0.0627451 0.07058824 0.04313726 ... 0.13725491 0.098039220.09019608][0.13333334 0.08235294 0.04313726 ... 0.09803922 0.17647060.27058825][0.38039216 0.2627451 0.13333334 ... 0.06666667 0.113725490.16078432]]][[[0.35686275 0.33333334 0.34901962 ... 0.19607843 0.18823530.1882353 ][0.38431373 0.37254903 0.39215687 ... 0.25882354 0.274509820.2627451 ][0.38431373 0.38039216 0.3882353 ... 0.2509804 0.254901980.24705882]...[0.7764706 0.76862746 0.72156864 ... 0.76862746 0.772549030.77254903][0.77254903 0.7647059 0.77254903 ... 0.76862746 0.768627460.77254903][0.7647059 0.75686276 0.7529412 ... 0.75686276 0.75294120.75686276]][[0.35686275 0.3372549 0.34509805 ... 0.20784314 0.203921570.19607843][0.3882353 0.38039216 0.39607844 ... 0.26666668 0.29019610.2627451 ][0.3882353 0.38039216 0.3882353 ... 0.2509804 0.266666680.25490198]...[0.78039217 0.77254903 0.73333335 ... 0.76862746 0.772549030.77254903][0.77254903 0.7647059 0.77254903 ... 0.76862746 0.768627460.77254903][0.7647059 0.75686276 0.75686276 ... 0.7490196 0.75294120.75686276]][[0.2901961 0.2627451 0.28235295 ... 0.13725491 0.137254910.13725491][0.34901962 0.3372549 0.36078432 ... 0.20392157 0.219607840.2 ][0.36078432 0.3529412 0.37254903 ... 0.20784314 0.215686280.21176471]...[0.77254903 0.7607843 0.72156864 ... 0.7607843 0.76470590.7647059 ][0.7647059 0.75686276 0.7607843 ... 0.7607843 0.76078430.7647059 ][0.7607843 0.7529412 0.7490196 ... 0.74509805 0.745098050.7490196 ]]][[[0.8745098 0.8784314 0.8784314 ... 0.8235294 0.80.7490196 ][0.83137256 0.8235294 0.827451 ... 0.7647059 0.745098050.73333335][0.8039216 0.79607844 0.8039216 ... 0.67058825 0.63137260.70980394]...[0.40784314 0.3647059 0.34901962 ... 0.29803923 0.274509820.28235295][0.41568628 0.36078432 0.35686275 ... 0.26666668 0.258823540.28627452][0.3882353 0.3529412 0.34117648 ... 0.2784314 0.266666680.28235295]][[0.8901961 0.89411765 0.89411765 ... 0.8117647 0.80392160.76862746][0.84705883 0.8392157 0.84313726 ... 0.75686276 0.745098050.7529412 ][0.81960785 0.8117647 0.81960785 ... 0.6627451 0.63137260.7294118 ]...[0.3372549 0.31764707 0.30588236 ... 0.2784314 0.254901980.2627451 ][0.32156864 0.29803923 0.29411766 ... 0.23921569 0.235294120.25882354][0.29411766 0.28235295 0.27450982 ... 0.2509804 0.247058820.25882354]][[0.9372549 0.9411765 0.9411765 ... 0.85490197 0.86274510.8352941 ][0.89411765 0.8862745 0.8901961 ... 0.79607844 0.80392160.81960785][0.8666667 0.85882354 0.8666667 ... 0.7019608 0.69019610.79607844]...[0.23921569 0.20784314 0.19607843 ... 0.30588236 0.26274510.2627451 ][0.23529412 0.2 0.19607843 ... 0.26666668 0.231372550.2509804 ][0.21960784 0.2 0.1882353 ... 0.27058825 0.239215690.2509804 ]]]] <NDArray 256x3x32x32 @cpu(0)> In?[11]: def wrapped_iter(data_iter):for X, y in data_iter:X = X[:, :1, :, :]yield X, yfor X, y in wrapped_iter(train_iter):print(X)print(y)breakfor X, y in wrapped_iter(test_iter):print(X)print(y)break [[[[0.40784314 0.3882353 0.40392157 ... 0.2509804 0.239215690.22745098][0.4 0.3882353 0.4 ... 0.2627451 0.26274510.23529412][0.39607844 0.38039216 0.4 ... 0.2901961 0.29019610.26666668]...[0.79607844 0.7882353 0.7882353 ... 0.59607846 0.584313750.5764706 ][0.74509805 0.7607843 0.74509805 ... 0.6431373 0.623529430.6117647 ][0.73333335 0.7254902 0.7372549 ... 0.6392157 0.64313730.6313726 ]]][[[1. 0.99215686 0.96862745 ... 0.62352943 0.68627450.8627451 ][1. 0.96862745 0.92156863 ... 0.5764706 0.69019610.7607843 ][1. 0.95686275 0.8745098 ... 0.63529414 0.75294120.7607843 ]...[0.49411765 0.5058824 0.58431375 ... 0.7019608 0.72941180.7490196 ][0.6431373 0.69803923 0.7254902 ... 0.7019608 0.71372550.7176471 ][0.8666667 0.9137255 0.8039216 ... 0.7058824 0.756862760.77254903]]][[[0.5411765 0.5411765 0.5647059 ... 0.29411766 0.219607840.25882354][0.58431375 0.56078434 0.5803922 ... 0.25490198 0.203921570.26666668][0.61960787 0.5686275 0.57254905 ... 0.23137255 0.219607840.25882354]...[0.59607846 0.6745098 0.70980394 ... 0.8352941 0.819607850.8 ][0.60784316 0.6901961 0.70980394 ... 0.8980392 0.917647060.8156863 ][0.6745098 0.75686276 0.7372549 ... 0.89411765 0.921568630.9098039 ]]]...[[[0.20392157 0.21176471 0.2 ... 0.14509805 0.168627460.13725491][0.19215687 0.20392157 0.21568628 ... 0.15294118 0.121568630.09019608][0.22352941 0.20784314 0.19607843 ... 0.21176471 0.172549020.09803922]...[0.49019608 0.47058824 0.5058824 ... 0.17254902 0.094117650.14509805][0.5019608 0.5882353 0.7019608 ... 0.1882353 0.180392160.18039216][0.42352942 0.5529412 0.68235296 ... 0.2 0.207843140.23137255]]][[[0.6431373 0.5803922 0.5921569 ... 0.24313726 0.36470590.27450982][0.69803923 0.6901961 0.5372549 ... 0.40392157 0.360784320.2901961 ][0.44705883 0.65882355 0.6 ... 0.49803922 0.35294120.29411766]...[0.827451 0.8039216 0.72156864 ... 0.25490198 0.254901980.29411766][0.89411765 0.8156863 0.7490196 ... 0.23529412 0.258823540.2901961 ][0.91764706 0.8392157 0.65882355 ... 0.22352941 0.227450980.27058825]]][[[0.04313726 0.07843138 0.14117648 ... 0.31764707 0.32549020.25882354][0.03529412 0.0627451 0.10980392 ... 0.3254902 0.282352950.2627451 ][0.01960784 0.05098039 0.07843138 ... 0.27450982 0.235294120.2901961 ]...[0.2627451 0.2901961 0.2509804 ... 0.32941177 0.349019620.3254902 ][0.24313726 0.21176471 0.1882353 ... 0.32941177 0.31372550.28627452][0.28235295 0.24705882 0.21960784 ... 0.3254902 0.294117660.26666668]]]] <NDArray 256x1x32x32 @cpu(0)>[2 9 4 7 3 1 3 5 9 6 2 9 4 4 9 5 3 7 2 9 3 2 1 4 3 1 0 6 7 4 4 0 5 6 3 3 82 6 1 8 1 4 0 7 1 4 8 4 5 1 0 6 8 1 0 8 4 4 7 0 9 9 2 6 4 4 2 7 3 4 3 0 09 2 4 0 7 6 5 9 6 5 0 0 0 6 7 8 8 7 7 8 7 9 3 4 4 6 1 0 5 6 0 6 6 7 1 8 92 2 5 2 9 9 8 6 2 4 3 1 7 0 2 4 8 3 6 3 7 2 4 4 9 2 3 7 0 6 9 4 9 6 6 7 68 2 5 4 7 6 0 2 9 5 9 3 1 5 9 2 1 7 7 0 5 0 5 2 3 9 7 1 3 5 5 7 0 6 2 3 15 3 6 2 2 5 7 0 7 5 8 5 9 7 0 7 2 8 1 7 4 2 3 8 6 1 6 1 6 0 8 8 8 7 9 4 26 6 9 1 5 2 5 1 4 6 1 8 9 2 4 7 0 4 3 3 6 5 9 4 1 0 2 5 9 3 1 6 6 6] <NDArray 256 @cpu(0)>[[[[0.61960787 0.62352943 0.64705884 ... 0.5372549 0.494117650.45490196][0.59607846 0.5921569 0.62352943 ... 0.53333336 0.490196080.46666667][0.5921569 0.5921569 0.61960787 ... 0.54509807 0.509803950.47058824]...[0.26666668 0.16470589 0.12156863 ... 0.14901961 0.050980390.15686275][0.23921569 0.19215687 0.13725491 ... 0.10196079 0.113725490.07843138][0.21176471 0.21960784 0.1764706 ... 0.09411765 0.133333340.08235294]]][[[0.92156863 0.90588236 0.9098039 ... 0.9137255 0.91372550.9098039 ][0.93333334 0.92156863 0.92156863 ... 0.9254902 0.92549020.92156863][0.92941177 0.91764706 0.91764706 ... 0.92156863 0.921568630.91764706]...[0.34117648 0.16862746 0.07450981 ... 0.6627451 0.71372550.7372549 ][0.32156864 0.18039216 0.14117648 ... 0.68235296 0.72549020.73333335][0.33333334 0.24313726 0.22745098 ... 0.65882355 0.70588240.7294118 ]]][[[0.61960787 0.61960787 0.54509807 ... 0.89411765 0.929411770.93333334][0.6666667 0.6745098 0.5921569 ... 0.9098039 0.96470590.9647059 ][0.68235296 0.6901961 0.6156863 ... 0.9019608 0.980392160.9607843 ]...[0.12156863 0.11764706 0.10196079 ... 0.14509805 0.035294120.01568628][0.09019608 0.10588235 0.09803922 ... 0.07450981 0.015686280.01960784][0.10980392 0.11764706 0.1254902 ... 0.01960784 0.015686280.02745098]]]...[[[0.2627451 0.26666668 0.27450982 ... 0.28235295 0.27843140.27450982][0.27058825 0.2784314 0.28627452 ... 0.2901961 0.29019610.28627452][0.2784314 0.28235295 0.28627452 ... 0.29411766 0.29019610.28627452]...[0.35686275 0.3882353 0.37254903 ... 0.30980393 0.349019620.3647059 ][0.33333334 0.35686275 0.34901962 ... 0.27058825 0.266666680.28235295][0.3254902 0.3372549 0.33333334 ... 0.2627451 0.266666680.25882354]]][[[0.7254902 0.7058824 0.6745098 ... 0.6156863 0.596078460.54901963][0.7921569 0.69411767 0.63529414 ... 0.6039216 0.57647060.5529412 ][0.7176471 0.6392157 0.627451 ... 0.5764706 0.57647060.5803922 ]...[0.6901961 0.62352943 0.6156863 ... 0.37254903 0.317647070.29803923][0.6784314 0.6392157 0.67058825 ... 0.39215687 0.384313730.36078432][0.64705884 0.59607846 0.62352943 ... 0.47843137 0.51764710.46666667]]][[[0.8 0.8039216 0.8156863 ... 0.8352941 0.847058830.84705883][0.80784315 0.8156863 0.827451 ... 0.8352941 0.82352940.827451 ][0.7882353 0.7921569 0.80784315 ... 0.78431374 0.768627460.76862746]...[0.5058824 0.50980395 0.52156866 ... 0.45882353 0.51372550.5294118 ][0.49411765 0.49803922 0.5058824 ... 0.4627451 0.51764710.5254902 ][0.4862745 0.49019608 0.49803922 ... 0.4509804 0.498039220.5058824 ]]]] <NDArray 256x1x32x32 @cpu(0)>[3 8 8 0 6 6 1 6 3 1 0 9 5 7 9 8 5 7 8 6 7 0 4 9 5 2 4 0 9 6 6 5 4 5 9 2 41 9 5 4 6 5 6 0 9 3 9 7 6 9 8 0 3 8 8 7 7 4 6 7 3 6 3 6 2 1 2 3 7 2 6 8 80 2 9 3 3 8 8 1 1 7 2 5 2 7 8 9 0 3 8 6 4 6 6 0 0 7 4 5 6 3 1 1 3 6 8 7 40 6 2 1 3 0 4 2 7 8 3 1 2 8 0 8 3 5 2 4 1 8 9 1 2 9 7 2 9 6 5 6 3 8 7 6 25 2 8 9 6 0 0 5 2 9 5 4 2 1 6 6 8 4 8 4 5 0 9 9 9 8 9 9 3 7 5 0 0 5 2 2 38 6 3 4 0 5 8 0 1 7 2 8 8 7 8 5 1 8 7 1 3 0 5 7 9 7 4 5 9 8 0 7 9 8 2 7 69 4 3 9 6 4 7 6 5 1 5 8 8 0 4 0 5 5 1 1 8 9 0 3 1 9 2 2 5 3 9 9 4 0] <NDArray 256 @cpu(0)> In?[12]: from mxnet import gluon, init from mxnet.gluon import loss as gloss, nn In?[13]: net = nn.Sequential() net.add(nn.Dense(10)) net.initialize(init.Normal(sigma=0.01)) In?[14]: loss = gloss.SoftmaxCrossEntropyLoss() In?[25]: trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.0001}) In?[26]: num_epochs = 100 gb.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None,None, trainer) epoch 1, loss 1.6195, train acc 0.457, test acc 0.410 epoch 2, loss 1.6196, train acc 0.457, test acc 0.411 epoch 3, loss 1.6181, train acc 0.457, test acc 0.411 epoch 4, loss 1.6183, train acc 0.457, test acc 0.411 epoch 5, loss 1.6191, train acc 0.457, test acc 0.410 epoch 6, loss 1.6196, train acc 0.457, test acc 0.411 epoch 7, loss 1.6189, train acc 0.457, test acc 0.410 epoch 8, loss 1.6189, train acc 0.457, test acc 0.411 epoch 9, loss 1.6183, train acc 0.457, test acc 0.410 epoch 10, loss 1.6186, train acc 0.457, test acc 0.411 epoch 11, loss 1.6182, train acc 0.457, test acc 0.410 epoch 12, loss 1.6175, train acc 0.457, test acc 0.410 epoch 13, loss 1.6181, train acc 0.457, test acc 0.410 epoch 14, loss 1.6182, train acc 0.457, test acc 0.411 epoch 15, loss 1.6192, train acc 0.457, test acc 0.410 epoch 16, loss 1.6191, train acc 0.457, test acc 0.411 epoch 17, loss 1.6182, train acc 0.457, test acc 0.410 epoch 18, loss 1.6176, train acc 0.457, test acc 0.410 epoch 19, loss 1.6175, train acc 0.458, test acc 0.410 epoch 20, loss 1.6182, train acc 0.457, test acc 0.410 epoch 21, loss 1.6178, train acc 0.457, test acc 0.410 epoch 22, loss 1.6180, train acc 0.457, test acc 0.410 epoch 23, loss 1.6178, train acc 0.457, test acc 0.411 epoch 24, loss 1.6179, train acc 0.457, test acc 0.411 epoch 25, loss 1.6178, train acc 0.457, test acc 0.411 epoch 26, loss 1.6180, train acc 0.457, test acc 0.411 epoch 27, loss 1.6181, train acc 0.457, test acc 0.410 epoch 28, loss 1.6172, train acc 0.457, test acc 0.410 epoch 29, loss 1.6177, train acc 0.457, test acc 0.411 epoch 30, loss 1.6170, train acc 0.458, test acc 0.410 epoch 31, loss 1.6162, train acc 0.458, test acc 0.410 epoch 32, loss 1.6184, train acc 0.457, test acc 0.410 epoch 33, loss 1.6175, train acc 0.457, test acc 0.410 epoch 34, loss 1.6174, train acc 0.457, test acc 0.411 epoch 35, loss 1.6173, train acc 0.457, test acc 0.411 epoch 36, loss 1.6177, train acc 0.457, test acc 0.411 epoch 37, loss 1.6174, train acc 0.457, test acc 0.410 epoch 38, loss 1.6174, train acc 0.457, test acc 0.410 epoch 39, loss 1.6171, train acc 0.457, test acc 0.411 epoch 40, loss 1.6178, train acc 0.457, test acc 0.410 epoch 41, loss 1.6173, train acc 0.457, test acc 0.410 epoch 42, loss 1.6169, train acc 0.457, test acc 0.411 epoch 43, loss 1.6166, train acc 0.457, test acc 0.410 epoch 44, loss 1.6172, train acc 0.457, test acc 0.410 epoch 45, loss 1.6166, train acc 0.457, test acc 0.410 epoch 46, loss 1.6174, train acc 0.457, test acc 0.410 epoch 47, loss 1.6170, train acc 0.457, test acc 0.410 epoch 48, loss 1.6166, train acc 0.457, test acc 0.410 epoch 49, loss 1.6165, train acc 0.457, test acc 0.410 epoch 50, loss 1.6163, train acc 0.457, test acc 0.410 epoch 51, loss 1.6167, train acc 0.457, test acc 0.410 epoch 52, loss 1.6172, train acc 0.457, test acc 0.410 epoch 53, loss 1.6163, train acc 0.458, test acc 0.410 epoch 54, loss 1.6166, train acc 0.457, test acc 0.410 epoch 55, loss 1.6163, train acc 0.457, test acc 0.410 epoch 56, loss 1.6171, train acc 0.457, test acc 0.410 epoch 57, loss 1.6170, train acc 0.457, test acc 0.410 epoch 58, loss 1.6163, train acc 0.457, test acc 0.410 epoch 59, loss 1.6160, train acc 0.458, test acc 0.410 epoch 60, loss 1.6163, train acc 0.457, test acc 0.410 epoch 61, loss 1.6165, train acc 0.457, test acc 0.410 epoch 62, loss 1.6157, train acc 0.457, test acc 0.410 epoch 63, loss 1.6169, train acc 0.457, test acc 0.410 epoch 64, loss 1.6158, train acc 0.457, test acc 0.410 epoch 65, loss 1.6167, train acc 0.457, test acc 0.410 epoch 66, loss 1.6162, train acc 0.458, test acc 0.410 epoch 67, loss 1.6167, train acc 0.457, test acc 0.410 epoch 68, loss 1.6163, train acc 0.457, test acc 0.409 epoch 69, loss 1.6170, train acc 0.457, test acc 0.410 epoch 70, loss 1.6164, train acc 0.457, test acc 0.410 epoch 71, loss 1.6166, train acc 0.457, test acc 0.410 epoch 72, loss 1.6157, train acc 0.457, test acc 0.410 epoch 73, loss 1.6159, train acc 0.457, test acc 0.410 epoch 74, loss 1.6163, train acc 0.457, test acc 0.410 epoch 75, loss 1.6162, train acc 0.457, test acc 0.410 epoch 76, loss 1.6154, train acc 0.457, test acc 0.409 epoch 77, loss 1.6161, train acc 0.457, test acc 0.410 epoch 78, loss 1.6169, train acc 0.457, test acc 0.409 epoch 79, loss 1.6154, train acc 0.457, test acc 0.409 epoch 80, loss 1.6162, train acc 0.457, test acc 0.409 epoch 81, loss 1.6163, train acc 0.457, test acc 0.410 epoch 82, loss 1.6161, train acc 0.457, test acc 0.409 epoch 83, loss 1.6156, train acc 0.457, test acc 0.410 epoch 84, loss 1.6153, train acc 0.458, test acc 0.409 epoch 85, loss 1.6159, train acc 0.457, test acc 0.409 epoch 86, loss 1.6164, train acc 0.457, test acc 0.410 epoch 87, loss 1.6154, train acc 0.457, test acc 0.410 epoch 88, loss 1.6152, train acc 0.457, test acc 0.410 epoch 89, loss 1.6154, train acc 0.457, test acc 0.410 epoch 90, loss 1.6155, train acc 0.457, test acc 0.409 epoch 91, loss 1.6160, train acc 0.458, test acc 0.409 epoch 92, loss 1.6148, train acc 0.458, test acc 0.409 epoch 93, loss 1.6156, train acc 0.457, test acc 0.409 epoch 94, loss 1.6152, train acc 0.457, test acc 0.409 epoch 95, loss 1.6157, train acc 0.458, test acc 0.410 epoch 96, loss 1.6152, train acc 0.458, test acc 0.410 epoch 97, loss 1.6152, train acc 0.457, test acc 0.410 epoch 98, loss 1.6151, train acc 0.457, test acc 0.410 epoch 99, loss 1.6150, train acc 0.457, test acc 0.409 epoch 100, loss 1.6158, train acc 0.457, test acc 0.410 In?[17]: gb.train_ch3?? In?[?]:

轉載于:https://www.cnblogs.com/TreeDream/p/10020362.html

總結

以上是生活随笔為你收集整理的softmax实现cifar10分类的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。