日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Pytorch模型迁移和迁移学习,导入部分模型参数

發(fā)布時間:2024/4/15 编程问答 34 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Pytorch模型迁移和迁移学习,导入部分模型参数 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

Pytorch模型遷移和遷移學習

目錄

Pytorch模型遷移和遷移學習

1. 利用resnet18做遷移學習

2. 修改網(wǎng)絡名稱并遷移學習

3.去除原模型的某些模塊

?


1. 利用resnet18做遷移學習

import torch from torchvision import modelsif __name__ == "__main__":# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")device = 'cpu'print("-----device:{}".format(device))print("-----Pytorch version:{}".format(torch.__version__))input_tensor = torch.zeros(1, 3, 100, 100)print('input_tensor:', input_tensor.shape)pretrained_file = "model/resnet18-5c106cde.pth"model = models.resnet18()model.load_state_dict(torch.load(pretrained_file))model.eval()out = model(input_tensor)print("out:", out.shape, out[0, 0:10])

結果輸出:

input_tensor: torch.Size([1, 3, 100, 100])
out: torch.Size([1, 1000]) tensor([ 0.4010, ?0.8436, ?0.3072, ?0.0627, ?0.4446, ?0.8470, ?0.1882, ?0.7012,0.2988, -0.7574], grad_fn=<SliceBackward>)

如果,我們修改了resnet18的網(wǎng)絡結構,如何將原來預訓練模型參數(shù)(resnet18-5c106cde.pth)遷移到新的resnet18網(wǎng)絡中呢?

比如,這里將官方的resnet18的self.layer4 = self._make_layer(block, 512, layers[3], stride=2)改為:self.layer44 = self._make_layer(block, 512, layers[3], stride=2)

class ResNet(nn.Module):def __init__(self, block, layers, num_classes=1000, zero_init_residual=False):super(ResNet, self).__init__()self.inplanes = 64self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,bias=False)self.bn1 = nn.BatchNorm2d(64)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)self.layer1 = self._make_layer(block, 64, layers[0])self.layer2 = self._make_layer(block, 128, layers[1], stride=2)self.layer3 = self._make_layer(block, 256, layers[2], stride=2)self.layer44 = self._make_layer(block, 512, layers[3], stride=2)self.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.fc = nn.Linear(512 * block.expansion, num_classes)for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')elif isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)# Zero-initialize the last BN in each residual branch,# so that the residual branch starts with zeros, and each residual block behaves like an identity.# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677if zero_init_residual:for m in self.modules():if isinstance(m, Bottleneck):nn.init.constant_(m.bn3.weight, 0)elif isinstance(m, BasicBlock):nn.init.constant_(m.bn2.weight, 0)def _make_layer(self, block, planes, blocks, stride=1):downsample = Noneif stride != 1 or self.inplanes != planes * block.expansion:downsample = nn.Sequential(conv1x1(self.inplanes, planes * block.expansion, stride),nn.BatchNorm2d(planes * block.expansion),)layers = []layers.append(block(self.inplanes, planes, stride, downsample))self.inplanes = planes * block.expansionfor _ in range(1, blocks):layers.append(block(self.inplanes, planes))return nn.Sequential(*layers)def forward(self, x):x = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.maxpool(x)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer44(x)x = self.avgpool(x)x = x.view(x.size(0), -1)x = self.fc(x)return x

這時,直接加載模型:

? ? model = models.resnet18()
? ? model.load_state_dict(torch.load(pretrained_file))

這時,肯定會報錯,類似:Missing key(s) in state_dict或者Unexpected key(s) in state_dict的錯誤:

RuntimeError: Error(s) in loading state_dict for ResNet:
?? ?Missing key(s) in state_dict: "layer44.0.conv1.weight", "layer44.0.bn1.weight", "layer44.0.bn1.bias", "layer44.0.bn1.running_mean", "layer44.0.bn1.running_var", "layer44.0.conv2.weight", "layer44.0.bn2.weight", "layer44.0.bn2.bias", "layer44.0.bn2.running_mean", "layer44.0.bn2.running_var", "layer44.0.downsample.0.weight", "layer44.0.downsample.1.weight", "layer44.0.downsample.1.bias", "layer44.0.downsample.1.running_mean", "layer44.0.downsample.1.running_var", "layer44.1.conv1.weight", "layer44.1.bn1.weight", "layer44.1.bn1.bias", "layer44.1.bn1.running_mean", "layer44.1.bn1.running_var", "layer44.1.conv2.weight", "layer44.1.bn2.weight", "layer44.1.bn2.bias", "layer44.1.bn2.running_mean", "layer44.1.bn2.running_var".?
?? ?Unexpected key(s) in state_dict: "layer4.0.conv1.weight", "layer4.0.bn1.running_mean", "layer4.0.bn1.running_var", "layer4.0.bn1.weight", "layer4.0.bn1.bias", "layer4.0.conv2.weight", "layer4.0.bn2.running_mean", "layer4.0.bn2.running_var", "layer4.0.bn2.weight", "layer4.0.bn2.bias", "layer4.0.downsample.0.weight", "layer4.0.downsample.1.running_mean", "layer4.0.downsample.1.running_var", "layer4.0.downsample.1.weight", "layer4.0.downsample.1.bias", "layer4.1.conv1.weight", "layer4.1.bn1.running_mean", "layer4.1.bn1.running_var", "layer4.1.bn1.weight", "layer4.1.bn1.bias", "layer4.1.conv2.weight", "layer4.1.bn2.running_mean", "layer4.1.bn2.running_var", "layer4.1.bn2.weight", "layer4.1.bn2.bias".?

Process finished with

RuntimeError: Error(s) in loading state_dict for ResNet:
?? ?Unexpected key(s) in state_dict: "layer4.0.conv1.weight", "layer4.0.bn1.running_mean", "layer4.0.bn1.running_var", "layer4.0.bn1.weight", "layer4.0.bn1.bias", "layer4.0.conv2.weight", "layer4.0.bn2.running_mean", "layer4.0.bn2.running_var", "layer4.0.bn2.weight", "layer4.0.bn2.bias", "layer4.0.downsample.0.weight", "layer4.0.downsample.1.running_mean", "layer4.0.downsample.1.running_var", "layer4.0.downsample.1.weight", "layer4.0.downsample.1.bias", "layer4.1.conv1.weight", "layer4.1.bn1.running_mean", "layer4.1.bn1.running_var", "layer4.1.bn1.weight", "layer4.1.bn1.bias", "layer4.1.conv2.weight", "layer4.1.bn2.running_mean", "layer4.1.bn2.running_var", "layer4.1.bn2.weight", "layer4.1.bn2.bias".?

我們希望將原來預訓練模型參數(shù)(resnet18-5c106cde.pth)遷移到新的resnet18網(wǎng)絡,當然只能遷移二者相同的模型參數(shù),不同的參數(shù)還是隨機初始化的.

def transfer_model(pretrained_file, model):'''只導入pretrained_file部分模型參數(shù)tensor([-0.7119, 0.0688, -1.7247, -1.7182, -1.2161, -0.7323, -2.1065, -0.5433,-1.5893, -0.5562]update:D.update([E, ]**F) -> None. Update D from dict/iterable E and F.If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = vIn either case, this is followed by: for k in F: D[k] = F[k]:param pretrained_file::param model::return:'''pretrained_dict = torch.load(pretrained_file) # get pretrained dictmodel_dict = model.state_dict() # get model dict# 在合并前(update),需要去除pretrained_dict一些不需要的參數(shù)pretrained_dict = transfer_state_dict(pretrained_dict, model_dict)model_dict.update(pretrained_dict) # 更新(合并)模型的參數(shù)model.load_state_dict(model_dict)return modeldef transfer_state_dict(pretrained_dict, model_dict):'''根據(jù)model_dict,去除pretrained_dict一些不需要的參數(shù),以便遷移到新的網(wǎng)絡url: https://blog.csdn.net/qq_34914551/article/details/87871134:param pretrained_dict::param model_dict::return:'''# state_dict2 = {k: v for k, v in save_model.items() if k in model_dict.keys()}state_dict = {}for k, v in pretrained_dict.items():if k in model_dict.keys():# state_dict.setdefault(k, v)state_dict[k] = velse:print("Missing key(s) in state_dict :{}".format(k))return state_dictif __name__ == "__main__":input_tensor = torch.zeros(1, 3, 100, 100)print('input_tensor:', input_tensor.shape)pretrained_file = "model/resnet18-5c106cde.pth"# model = resnet18()# model.load_state_dict(torch.load(pretrained_file))# model.eval()# out = model(input_tensor)# print("out:", out.shape, out[0, 0:10])model1 = resnet18()model1 = transfer_model(pretrained_file, model1)out1 = model1(input_tensor)print("out1:", out1.shape, out1[0, 0:10])

2. 修改網(wǎng)絡名稱并遷移學習

上面的例子,只是將官方的resnet18的self.layer4 = self._make_layer(block, 512, layers[3], stride=2)改為了:self.layer44 = self._make_layer(block, 512, layers[3], stride=2),我們僅僅是修改了一個網(wǎng)絡名稱而已,就導致?model.load_state_dict(torch.load(pretrained_file))出錯,

那么,我們如何將預訓練模型"model/resnet18-5c106cde.pth"轉換成符合新的網(wǎng)絡的模型參數(shù)呢?

方法很簡單,只需要將resnet18-5c106cde.pth的模型參數(shù)中所有前綴為layer4的名稱,改為layer44即可

本人已經(jīng)定義好了方法:

modify_state_dict(pretrained_dict, model_dict, old_prefix, new_prefix)

def string_rename(old_string, new_string, start, end):new_string = old_string[:start] + new_string + old_string[end:]return new_stringdef modify_model(pretrained_file, model, old_prefix, new_prefix):''':param pretrained_file::param model::param old_prefix::param new_prefix::return:'''pretrained_dict = torch.load(pretrained_file)model_dict = model.state_dict()state_dict = modify_state_dict(pretrained_dict, model_dict, old_prefix, new_prefix)model.load_state_dict(state_dict)return modeldef modify_state_dict(pretrained_dict, model_dict, old_prefix, new_prefix):'''修改model dict:param pretrained_dict::param model_dict::param old_prefix::param new_prefix::return:'''state_dict = {}for k, v in pretrained_dict.items():if k in model_dict.keys():# state_dict.setdefault(k, v)state_dict[k] = velse:for o, n in zip(old_prefix, new_prefix):prefix = k[:len(o)]if prefix == o:kk = string_rename(old_string=k, new_string=n, start=0, end=len(o))print("rename layer modules:{}-->{}".format(k, kk))state_dict[kk] = vreturn state_dict if __name__ == "__main__":input_tensor = torch.zeros(1, 3, 100, 100)print('input_tensor:', input_tensor.shape)pretrained_file = "model/resnet18-5c106cde.pth"# model = models.resnet18()# model.load_state_dict(torch.load(pretrained_file))# model.eval()# out = model(input_tensor)# print("out:", out.shape, out[0, 0:10])## model1 = resnet18()# model1 = transfer_model(pretrained_file, model1)# out1 = model1(input_tensor)# print("out1:", out1.shape, out1[0, 0:10])#new_file = "new_model.pth"model = resnet18()new_model = modify_model(pretrained_file, model, old_prefix=["layer4"], new_prefix=["layer44"])torch.save(new_model.state_dict(), new_file)model2 = resnet18()model2.load_state_dict(torch.load(new_file))model2.eval()out2 = model2(input_tensor)print("out2:", out2.shape, out2[0, 0:10])

這時,輸出,跟之前一模一樣了

out: torch.Size([1, 1000]) tensor([ 0.4010, ?0.8436, ?0.3072, ?0.0627, ?0.4446, ?0.8470, ?0.1882, ?0.7012,0.2988, -0.7574], grad_fn=<SliceBackward>)

3.去除原模型的某些模塊

? 下面是在不修改原模型代碼的情況下,通過"resnet18.named_children()"和"resnet18.children()"的方法去除子模塊"fc"和"avgpool"

import torch import torchvision.models as models from collections import OrderedDictif __name__=="__main__":resnet18 = models.resnet18(False)print("resnet18",resnet18)# use named_children()resnet18_v1 = OrderedDict(resnet18.named_children())# remove avgpool,fcresnet18_v1.pop("avgpool")resnet18_v1.pop("fc")resnet18_v1 = torch.nn.Sequential(resnet18_v1)print("resnet18_v1",resnet18_v1)# use childrenresnet18_v2 = torch.nn.Sequential(*list(resnet18.children())[:-2])print(resnet18_v2,resnet18_v2)

?

總結

以上是生活随笔為你收集整理的Pytorch模型迁移和迁移学习,导入部分模型参数的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 色婷婷久久久 | 好吊日精品视频 | 黄色成人av | 亚洲成a人片77777精品 | 一本加勒比波多野结衣 | 国产69熟 | 国产精品一二三四区 | 国产中文字幕视频 | 国产aⅴ激情无码久久久无码 | 香蕉久久国产av一区二区 | 天天操天天干天天插 | 亚洲精品丝袜 | 91丨porny在线 | 免费一级特黄特色毛片久久看 | 中文字幕乱码人妻一区二区三区 | 久久久久久久久91 | 国产又粗又猛又大爽 | 欧美激情综合五月色丁香 | 精品中文字幕在线观看 | 日本大胆裸体做爰视频 | 色多多入口| 偷操 | 色七七亚洲 | 中国丰满老太hd | 欧美成人精品一区二区综合免费 | 光溜溜视频素材大全美女 | 亚洲精品高清无码视频 | 午夜激情视频 | 日韩欧美一区在线观看 | 国产九九在线 | 丰满少妇在线观看网站 | www.999热| 天天干天天做天天操 | 亚洲欧美日韩图片 | 呦呦网 | 亚洲一区二区三区高清在线 | 天天综合久久 | 国产免费自拍 | 午夜高潮视频 | 草草影院最新网址 | 日本一区二区三区四区视频 | 午夜男人天堂 | 午夜精品久久久久久毛片 | 国产1页| 岛国精品在线播放 | 97人妻精品视频一区 | 亚洲精品人人 | 中文字幕一区二区三区人妻四季 | 夜夜嗷| 国产不卡精品 | 国产亚洲欧美在线视频 | 国产精品爽爽爽 | 337p粉嫩大胆噜噜噜亚瑟影院 | 欧美成人黄色片 | 娇妻之欲海泛舟无弹窗笔趣阁 | 黄色网页免费 | 免费在线看黄色片 | 国产精品三级av | 久久久久久久久久网 | 国产精品一二三四区 | 67194国产 | 黄色一级片欧美 | 国产91九色 | 日韩精品不卡 | 性欧美视频| 婷婷综合网 | a无一区二区三区 | www国产精品内射老熟女 | 姐姐你真棒插曲快来救救我电影 | 精品国产一区一区二区三亚瑟 | 涩av| 日本一区二区三区精品视频 | 亚洲国产精品国自产拍久久 | 欧美第一页在线 | 国产欧美在线 | 国模私拍av | 深夜福利免费在线观看 | 91久久精品一区二区三区 | 深夜福利1000 | 人人草人人插 | 欧美国产一二三区 | 久久精品国产亚洲av麻豆色欲 | 日韩精品一 | 黄色成人在线视频 | 黄色免费在线观看网站 | av免费天堂 | www.色悠悠| 蜜桃视频一区二区 | 瑟瑟视频网站 | 中文字幕第18页 | 成人手机看片 | 综合在线播放 | 国产视频不卡一区 | 男生操女生动漫 | 青娱乐最新官网 | 秋霞国产精品 | 成人午夜福利一区二区 | 蜜桃导航-精品导航 | 少妇视频网|