日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 人工智能 > pytorch >内容正文

pytorch

01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)

發(fā)布時間:2024/7/5 pytorch 34 豆豆
生活随笔 收集整理的這篇文章主要介紹了 01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络) 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

文章目錄

    • 1. 導(dǎo)入包
    • 2. 預(yù)覽數(shù)據(jù)
    • 3. 邏輯回歸
    • 4. 神經(jīng)網(wǎng)絡(luò)
      • 4.1 定義神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)
      • 4.2 初始化模型參數(shù)
      • 4.3 循環(huán)
        • 4.3.1 前向傳播
        • 4.3.2 計算損失
        • 4.3.3 后向傳播
        • 4.3.4 梯度下降
      • 4.4 組建Model
      • 4.5 預(yù)測
      • 4.6 調(diào)節(jié)隱藏層單元個數(shù)
      • 4.7 更改激活函數(shù)
      • 4.8 更改學(xué)習(xí)率
      • 4.9 其他數(shù)據(jù)集下的表現(xiàn)

選擇題測試:
參考博文1
參考博文2

建立你的第一個神經(jīng)網(wǎng)絡(luò)!其有1個隱藏層。

1. 導(dǎo)入包

# Package imports import numpy as np import matplotlib.pyplot as plt from testCases import * import sklearn import sklearn.datasets import sklearn.linear_model from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets%matplotlib inlinenp.random.seed(1) # set a seed so that the results are consistent

2. 預(yù)覽數(shù)據(jù)

  • 可視化數(shù)據(jù)
X, Y = load_planar_dataset() # Visualize the data: plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral);


紅色的標(biāo)簽為 0, 藍色的標(biāo)簽為 1,我們的目標(biāo)是建模將它們分開

  • 數(shù)據(jù)維度
### START CODE HERE ### (≈ 3 lines of code) shape_X = X.shape shape_Y = Y.shape m = X.shape[1] # training set size ### END CODE HERE ###print ('The shape of X is: ' + str(shape_X)) print ('The shape of Y is: ' + str(shape_Y)) print ('I have m = %d training examples!' % (m)) The shape of X is: (2, 400) The shape of Y is: (1, 400) I have m = 400 training examples!

3. 邏輯回歸

# Train the logistic regression classifier clf = sklearn.linear_model.LogisticRegressionCV(); clf.fit(X.T, Y.T); # Plot the decision boundary for logistic regression plot_decision_boundary(lambda x: clf.predict(x), X, Y) plt.title("Logistic Regression")# Print accuracy LR_predictions = clf.predict(X.T) print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) +'% ' + "(percentage of correctly labelled datapoints)") Accuracy of logistic regression: 47 % (percentage of correctly labelled datapoints)


數(shù)據(jù)集是線性不可分的,邏輯回歸變現(xiàn)的不好,下面看看神經(jīng)網(wǎng)絡(luò)怎么樣。

4. 神經(jīng)網(wǎng)絡(luò)

模型如下:


對于一個樣本 x(i)x^{(i)}x(i) 而言:
z[1](i)=W[1]x(i)+b[1](i)z^{[1] (i)} = W^{[1]} x^{(i)} + b^{[1] (i)}z[1](i)=W[1]x(i)+b[1](i)
a[1](i)=tanh?(z[1](i))a^{[1] (i)} = \tanh(z^{[1] (i)})a[1](i)=tanh(z[1](i))
z[2](i)=W[2]a[1](i)+b[2](i)z^{[2] (i)} = W^{[2]} a^{[1] (i)} + b^{[2] (i)}z[2](i)=W[2]a[1](i)+b[2](i)
y^(i)=a[2](i)=σ(z[2](i))\hat{y}^{(i)} = a^{[2] (i)} = \sigma(z^{ [2] (i)})y^?(i)=a[2](i)=σ(z[2](i))

yprediction(i)={1if?a[2](i)>0.50otherwise?y_{\text {prediction}}^{(i)}=\left\{\begin{array}{ll}1 & \text { if } a^{[2](i)}>0.5 \\ 0 & \text { otherwise }\end{array}\right.yprediction(i)?={10??if?a[2](i)>0.5?otherwise??

得到所有的樣本的預(yù)測值后,計算損失:
J=?1m∑i=0m(y(i)log?(a[2](i))+(1?y(i))log?(1?a[2](i)))J = - \frac{1}{m} \sum\limits_{i = 0}^{m} \large\left(\small y^{(i)}\log\left(a^{[2] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[2] (i)}\right) \large \right) \smallJ=?m1?i=0m?(y(i)log(a[2](i))+(1?y(i))log(1?a[2](i)))

建立神經(jīng)網(wǎng)絡(luò)的一般方法:

  • 1、定義神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)(輸入,隱藏單元等)
  • 2、初始化模型的參數(shù)
  • 3、循環(huán):
    —— a、實現(xiàn)正向傳播
    —— b、計算損失
    —— c、實現(xiàn)反向傳播,計算梯度
    —— d、更新參數(shù)(梯度下降)

編寫輔助函數(shù),計算步驟1-3
將它們合并到 nn_model()的函數(shù)中
學(xué)習(xí)正確的參數(shù),對新數(shù)據(jù)進行預(yù)測

4.1 定義神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)

  • 定義每層的節(jié)點個數(shù)
# GRADED FUNCTION: layer_sizesdef layer_sizes(X, Y):"""Arguments:X -- input dataset of shape (input size, number of examples)Y -- labels of shape (output size, number of examples)Returns:n_x -- the size of the input layern_h -- the size of the hidden layern_y -- the size of the output layer"""### START CODE HERE ### (≈ 3 lines of code)n_x = X.shape[0] # size of input layern_h = 4n_y = Y.shape[0] # size of output layer### END CODE HERE ###return (n_x, n_h, n_y)

4.2 初始化模型參數(shù)

  • 隨機初始化權(quán)重 w,偏置 b 初始化為 0
# GRADED FUNCTION: initialize_parametersdef initialize_parameters(n_x, n_h, n_y):"""Argument:n_x -- size of the input layern_h -- size of the hidden layern_y -- size of the output layerReturns:params -- python dictionary containing your parameters:W1 -- weight matrix of shape (n_h, n_x)b1 -- bias vector of shape (n_h, 1)W2 -- weight matrix of shape (n_y, n_h)b2 -- bias vector of shape (n_y, 1)"""np.random.seed(2) # we set up a seed so that your output matches ours although the initialization is random.### START CODE HERE ### (≈ 4 lines of code)W1 = np.random.randn(n_h, n_x)*0.01 # randn 標(biāo)準(zhǔn)正態(tài)分布b1 = np.zeros((n_h, 1))W2 = np.random.randn(n_y, n_h)*0.01b2 = np.zeros((n_y, 1))### END CODE HERE ###assert (W1.shape == (n_h, n_x))assert (b1.shape == (n_h, 1))assert (W2.shape == (n_y, n_h))assert (b2.shape == (n_y, 1))parameters = {"W1": W1,"b1": b1,"W2": W2,"b2": b2}return parameters

4.3 循環(huán)

4.3.1 前向傳播

  • 根據(jù)上面的公式,編寫代碼
# GRADED FUNCTION: forward_propagationdef forward_propagation(X, parameters):"""Argument:X -- input data of size (n_x, m)parameters -- python dictionary containing your parameters (output of initialization function)Returns:A2 -- The sigmoid output of the second activationcache -- a dictionary containing "Z1", "A1", "Z2" and "A2""""# Retrieve each parameter from the dictionary "parameters"### START CODE HERE ### (≈ 4 lines of code)W1 = parameters['W1']b1 = parameters['b1']W2 = parameters['W2']b2 = parameters['b2']### END CODE HERE #### Implement Forward Propagation to calculate A2 (probabilities)### START CODE HERE ### (≈ 4 lines of code)Z1 = np.dot(W1, X) + b1A1 = np.tanh(Z1)Z2 = np.dot(W2, A1) + b2A2 = sigmoid(Z2)### END CODE HERE ###assert(A2.shape == (1, X.shape[1]))cache = {"Z1": Z1,"A1": A1,"Z2": Z2,"A2": A2}return A2, cache

4.3.2 計算損失

  • 計算了 A2,也就是每個樣本的預(yù)測值,計算損失
    J=?1m∑i=0m(y(i)log?(a[2](i))+(1?y(i))log?(1?a[2](i)))J = - \frac{1}{m} \sum\limits_{i = 0}^{m} \large\left(\small y^{(i)}\log\left(a^{[2] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[2] (i)}\right) \large \right) \smallJ=?m1?i=0m?(y(i)log(a[2](i))+(1?y(i))log(1?a[2](i)))
# GRADED FUNCTION: compute_costdef compute_cost(A2, Y, parameters):"""Computes the cross-entropy cost given in equation (13)Arguments:A2 -- The sigmoid output of the second activation, of shape (1, number of examples)Y -- "true" labels vector of shape (1, number of examples)parameters -- python dictionary containing your parameters W1, b1, W2 and b2Returns:cost -- cross-entropy cost given equation (13)"""m = Y.shape[1] # number of example# Compute the cross-entropy cost### START CODE HERE ### (≈ 2 lines of code)logprobs = Y*np.log(A2)+(1-Y)*np.log(1-A2)cost = -np.sum(logprobs)/m### END CODE HERE ###cost = np.squeeze(cost) # makes sure cost is the dimension we expect. # E.g., turns [[17]] into 17 assert(isinstance(cost, float))return cost

4.3.3 后向傳播

一些公式如下:

激活函數(shù)的導(dǎo)數(shù),請查閱

  • sigmoid

    a=g(z);g′(z)=ddzg(z)=a(1?a)a=g(z) ;\quad g^{\prime}(z)=\fracozvdkddzhkzd{d z} g(z)=a(1-a)a=g(z);g(z)=dzd?g(z)=a(1?a)
  • tanh

    a=g(z);g′(z)=ddzg(z)=1?a2a=g(z) ; \quad g^{\prime}(z)=\fracozvdkddzhkzd{d z} g(z)=1-a^2a=g(z);g(z)=dzd?g(z)=1?a2

sigmoid 下?lián)p失函數(shù)求導(dǎo)

# GRADED FUNCTION: backward_propagationdef backward_propagation(parameters, cache, X, Y):"""Implement the backward propagation using the instructions above.Arguments:parameters -- python dictionary containing our parameters cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".X -- input data of shape (2, number of examples)Y -- "true" labels vector of shape (1, number of examples)Returns:grads -- python dictionary containing your gradients with respect to different parameters"""m = X.shape[1]# First, retrieve W1 and W2 from the dictionary "parameters".### START CODE HERE ### (≈ 2 lines of code)W1 = parameters['W1']W2 = parameters['W2']### END CODE HERE #### Retrieve also A1 and A2 from dictionary "cache".### START CODE HERE ### (≈ 2 lines of code)A1 = cache['A1']A2 = cache['A2']### END CODE HERE #### Backward propagation: calculate dW1, db1, dW2, db2. ### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above)dZ2 = A2-YdW2 = np.dot(dZ2, A1.T)/mdb2 = np.sum(dZ2, axis=1, keepdims=True)/mdZ1 = np.dot(W2.T, dZ2)*(1-np.power(A1, 2))dW1 = np.dot(dZ1, X.T)/mdb1 = np.sum(dZ1, axis=1, keepdims=True)/m### END CODE HERE ###grads = {"dW1": dW1,"db1": db1,"dW2": dW2,"db2": db2}return grads

4.3.4 梯度下降

  • 選取合適的學(xué)習(xí)率,學(xué)習(xí)率太大,會產(chǎn)生震蕩,收斂慢,甚至不收斂
# GRADED FUNCTION: update_parametersdef update_parameters(parameters, grads, learning_rate = 1.2):"""Updates parameters using the gradient descent update rule given aboveArguments:parameters -- python dictionary containing your parameters grads -- python dictionary containing your gradients Returns:parameters -- python dictionary containing your updated parameters """# Retrieve each parameter from the dictionary "parameters"### START CODE HERE ### (≈ 4 lines of code)W1 = parameters['W1']b1 = parameters['b1']W2 = parameters['W2']b2 = parameters['b2']### END CODE HERE #### Retrieve each gradient from the dictionary "grads"### START CODE HERE ### (≈ 4 lines of code)dW1 = grads['dW1']db1 = grads['db1']dW2 = grads['dW2']db2 = grads['db2']## END CODE HERE #### Update rule for each parameter### START CODE HERE ### (≈ 4 lines of code)W1 = W1 - learning_rate * dW1b1 = b1 - learning_rate * db1W2 = W2 - learning_rate * dW2b2 = b2 - learning_rate * db2### END CODE HERE ###parameters = {"W1": W1,"b1": b1,"W2": W2,"b2": b2}return parameters

4.4 組建Model

  • 將上面的函數(shù)以正確順序放在 model 里
# GRADED FUNCTION: nn_modeldef nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):"""Arguments:X -- dataset of shape (2, number of examples)Y -- labels of shape (1, number of examples)n_h -- size of the hidden layernum_iterations -- Number of iterations in gradient descent loopprint_cost -- if True, print the cost every 1000 iterationsReturns:parameters -- parameters learnt by the model. They can then be used to predict."""np.random.seed(3)n_x = layer_sizes(X, Y)[0]n_y = layer_sizes(X, Y)[2]# Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". # Outputs = "W1, b1, W2, b2, parameters".### START CODE HERE ### (≈ 5 lines of code)parameters = initialize_parameters(n_x, n_h, n_y)W1 = parameters['W1']b1 = parameters['b1']W2 = parameters['W2']b2 = parameters['b2']### END CODE HERE #### Loop (gradient descent)for i in range(0, num_iterations):### START CODE HERE ### (≈ 4 lines of code)# Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".A2, cache = forward_propagation(X, parameters)# Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".cost = compute_cost(A2, Y, parameters)# Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".grads = backward_propagation(parameters, cache, X, Y)# Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".parameters = update_parameters(parameters, grads, learning_rate=1.2)### END CODE HERE #### Print the cost every 1000 iterationsif print_cost and i % 1000 == 0:print ("Cost after iteration %i: %f" %(i, cost))return parameters

4.5 預(yù)測

predictions={1if?activation>0.50otherwisepredictions = \begin{cases} 1 & \text{if}\ activation > 0.5 \\ 0 & \text{otherwise} \end{cases}predictions={10?if?activation>0.5otherwise?

# GRADED FUNCTION: predictdef predict(parameters, X):"""Using the learned parameters, predicts a class for each example in XArguments:parameters -- python dictionary containing your parameters X -- input data of size (n_x, m)Returnspredictions -- vector of predictions of our model (red: 0 / blue: 1)"""# Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold.### START CODE HERE ### (≈ 2 lines of code)A2, cache = forward_propagation(X, parameters)predictions = (A2 > 0.5)### END CODE HERE ###return predictions
  • 建立一個含有1個隱藏層(4個單元)的神經(jīng)網(wǎng)絡(luò)模型
# Build a model with a n_h-dimensional hidden layer parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)# Plot the decision boundary plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y) plt.title("Decision Boundary for hidden layer size " + str(4)) Cost after iteration 0: 0.693048 Cost after iteration 1000: 0.288083 Cost after iteration 2000: 0.254385 Cost after iteration 3000: 0.233864 Cost after iteration 4000: 0.226792 Cost after iteration 5000: 0.222644 Cost after iteration 6000: 0.219731 Cost after iteration 7000: 0.217504 Cost after iteration 8000: 0.219550 Cost after iteration 9000: 0.218633

# Print accuracy predictions = predict(parameters, X) print ('Accuracy: %d' % float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100) + '%') Accuracy: 90%

可以看出模型較好地將兩類點分開了!準(zhǔn)確率 90%,比邏輯回歸 47%高不少。

4.6 調(diào)節(jié)隱藏層單元個數(shù)

plt.figure(figsize=(16, 32)) hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50] for i, n_h in enumerate(hidden_layer_sizes):plt.subplot(5, 2, i+1)plt.title('Hidden Layer of size %d' % n_h)parameters = nn_model(X, Y, n_h, num_iterations = 5000)plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)predictions = predict(parameters, X)accuracy = float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100)print ("Accuracy for {} hidden units: {} %".format(n_h, accuracy)) Accuracy for 1 hidden units: 67.5 % Accuracy for 2 hidden units: 67.25 % Accuracy for 3 hidden units: 90.75 % Accuracy for 4 hidden units: 90.5 % Accuracy for 5 hidden units: 91.25 % Accuracy for 20 hidden units: 90.5 % Accuracy for 50 hidden units: 90.75 %


可以看出:

  • 較大的模型(具有更多隱藏單元)能夠更好地適應(yīng)訓(xùn)練集,直到最大的模型過擬合了
  • 最好的隱藏層大小似乎是n_h=5左右。這個值似乎很適合數(shù)據(jù),而不會引起明顯的過擬合
  • 稍后還將了解正則化,它允許你使用非常大的模型(如n_h=50),而不會出現(xiàn)太多過擬合

4.7 更改激活函數(shù)

  • 將隱藏層的激活函數(shù)更改為 sigmoid 函數(shù),準(zhǔn)確率沒有使用tanh的高,tanh在任何場合幾乎都優(yōu)于sigmoid
Accuracy for 1 hidden units: 50.5 % Accuracy for 2 hidden units: 59.0 % Accuracy for 3 hidden units: 56.75 % Accuracy for 4 hidden units: 50.0 % Accuracy for 5 hidden units: 62.25000000000001 % Accuracy for 20 hidden units: 85.5 % Accuracy for 50 hidden units: 87.0 %

  • 將隱藏層的激活函數(shù)更改為 ReLu 函數(shù),似乎沒有用,感覺是需要更多的隱藏層,才能達到效果
def relu(X):return np.maximum(0, X) Accuracy for 1 hidden units: 50.0 % Accuracy for 2 hidden units: 50.0 % Accuracy for 3 hidden units: 50.0 % Accuracy for 4 hidden units: 50.0 % Accuracy for 5 hidden units: 50.0 % Accuracy for 20 hidden units: 50.0 % Accuracy for 50 hidden units: 50.0 %

報了些警告

C:\Users\mingm\AppData\Roaming\Python\Python37\site-packages\ ipykernel_launcher.py:20: RuntimeWarning: divide by zero encountered in log C:\Users\mingm\AppData\Roaming\Python\Python37\site-packages\ ipykernel_launcher.py:20: RuntimeWarning: invalid value encountered in multiply C:\Users\mingm\AppData\Roaming\Python\Python37\site-packages\ ipykernel_launcher.py:35: RuntimeWarning: overflow encountered in power C:\Users\mingm\AppData\Roaming\Python\Python37\site-packages\ ipykernel_launcher.py:35: RuntimeWarning: invalid value encountered in multiply C:\Users\mingm\AppData\Roaming\Python\Python37\site-packages \ipykernel_launcher.py:35: RuntimeWarning: overflow encountered in multiply

4.8 更改學(xué)習(xí)率

  • 采用 tanh 激活函數(shù),調(diào)整學(xué)習(xí)率檢查效果

學(xué)習(xí)率 2.0

Accuracy for 1 hidden units: 67.5 % Accuracy for 2 hidden units: 67.25 % Accuracy for 3 hidden units: 90.75 % Accuracy for 4 hidden units: 90.75 % Accuracy for 5 hidden units: 90.25 % Accuracy for 20 hidden units: 91.0 % Accuracy for 50 hidden units: 91.25 % best

學(xué)習(xí)率 1.5

Accuracy for 1 hidden units: 67.5 % Accuracy for 2 hidden units: 67.25 % Accuracy for 3 hidden units: 90.75 % Accuracy for 4 hidden units: 89.75 % Accuracy for 5 hidden units: 90.5 % Accuracy for 20 hidden units: 91.0 % best Accuracy for 50 hidden units: 90.75 %

學(xué)習(xí)率 1.2

Accuracy for 1 hidden units: 67.5 % Accuracy for 2 hidden units: 67.25 % Accuracy for 3 hidden units: 90.75 % Accuracy for 4 hidden units: 90.5 % Accuracy for 5 hidden units: 91.25 % best Accuracy for 20 hidden units: 90.5 % Accuracy for 50 hidden units: 90.75 %

學(xué)習(xí)率 1.0

Accuracy for 1 hidden units: 67.25 % Accuracy for 2 hidden units: 67.0 % Accuracy for 3 hidden units: 90.75 % Accuracy for 4 hidden units: 90.5 % Accuracy for 5 hidden units: 91.0 % best Accuracy for 20 hidden units: 91.0 % best Accuracy for 50 hidden units: 90.75 %

學(xué)習(xí)率 0.5

Accuracy for 1 hidden units: 67.25 % Accuracy for 2 hidden units: 66.5 % Accuracy for 3 hidden units: 89.25 % Accuracy for 4 hidden units: 90.0 % Accuracy for 5 hidden units: 89.75 % Accuracy for 20 hidden units: 90.0 % best Accuracy for 50 hidden units: 89.75 %

學(xué)習(xí)率 0.1

Accuracy for 1 hidden units: 67.0 % Accuracy for 2 hidden units: 64.75 % Accuracy for 3 hidden units: 88.25 % Accuracy for 4 hidden units: 88.0 % Accuracy for 5 hidden units: 88.5 % Accuracy for 20 hidden units: 88.75 % best Accuracy for 50 hidden units: 88.75 % best

大致規(guī)律:

  • 學(xué)習(xí)率太小,造成學(xué)習(xí)不充分,準(zhǔn)確率較低
  • 學(xué)習(xí)率越大,需要越多的隱藏單元來提高準(zhǔn)確率?(請大佬指點)

4.9 其他數(shù)據(jù)集下的表現(xiàn)

均為tanh激活函數(shù),學(xué)習(xí)率1.2

  • dataset = "noisy_circles"
Accuracy for 1 hidden units: 62.5 % Accuracy for 2 hidden units: 72.5 % Accuracy for 3 hidden units: 84.0 % best Accuracy for 4 hidden units: 83.0 % Accuracy for 5 hidden units: 83.5 % Accuracy for 20 hidden units: 79.5 % Accuracy for 50 hidden units: 83.5 %

  • dataset = "noisy_moons"
Accuracy for 1 hidden units: 86.0 % Accuracy for 2 hidden units: 88.0 % Accuracy for 3 hidden units: 97.0 % best Accuracy for 4 hidden units: 96.5 % Accuracy for 5 hidden units: 96.0 % Accuracy for 20 hidden units: 86.0 % Accuracy for 50 hidden units: 86.0 %

  • dataset = "blobs"
Accuracy for 1 hidden units: 67.0 % Accuracy for 2 hidden units: 67.0 % Accuracy for 3 hidden units: 83.0 % Accuracy for 4 hidden units: 83.0 % Accuracy for 5 hidden units: 83.0 % Accuracy for 20 hidden units: 86.0 % best Accuracy for 50 hidden units: 83.5 %

  • dataset = "gaussian_quantiles"
Accuracy for 1 hidden units: 65.0 % Accuracy for 2 hidden units: 79.5 % Accuracy for 3 hidden units: 97.0 % Accuracy for 4 hidden units: 97.0 % Accuracy for 5 hidden units: 100.0 % best Accuracy for 20 hidden units: 97.5 % Accuracy for 50 hidden units: 96.0 %


不同的數(shù)據(jù)集下,表現(xiàn)的效果也不太一樣。


我的CSDN博客地址 https://michael.blog.csdn.net/

長按或掃碼關(guān)注我的公眾號(Michael阿明),一起加油、一起學(xué)習(xí)進步!

總結(jié)

以上是生活随笔為你收集整理的01.神经网络和深度学习 W3.浅层神经网络(作业:带一个隐藏层的神经网络)的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。