日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

使用注意力机制建模 - 标准化日期格式

發布時間:2024/7/5 编程问答 29 豆豆
生活随笔 收集整理的這篇文章主要介紹了 使用注意力机制建模 - 标准化日期格式 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

文章目錄

    • 1. 概述
    • 2. 數據
    • 3. 模型
    • 4. 訓練
    • 5. 測試

參考 基于深度學習的自然語言處理

本文使用attention機制的模型,將各種格式的日期轉化成標準格式的日期

1. 概述

  • LSTM、GRU 減少了梯度消失的問題,但是對于復雜依賴結構的長句子,梯度消失仍然存在
  • 注意力機制能同時看見句子中的每個位置,并賦予每個位置不同的權重(注意力),且可以并行計算

2. 數據

  • 生成日期數據
from faker import Faker from babel.dates import format_date import random fake = Faker() fake.seed(123) random.seed(321)# 各種日期格式 FORMATS = ['short','medium','long','full','full','full','full','full','full','full','full','full','full','d MMM YYY','d MMMM YYY','dd MMM YYY','d MMM, YYY','d MMMM, YYY','dd, MMM YYY','d MM YY','d MMMM YYY','MMMM d YYY','MMMM d, YYY','dd.MM.YY']
  • 生成日期數據:隨機格式(X),標準格式(Y)
def load_date():# 加載一些日期數據dt = fake.date_object() # 隨機一個日期human_readable = format_date(dt, format=random.choice(FORMATS),locale='en_US')# 使用隨機選取的格式,生成日期human_readable = human_readable.lower().replace(',','')machine_readable = dt.isoformat() # 標準格式return human_readable, machine_readable, dttest_date = load_date()

輸出:

  • 建立字典,以及映射關系(字符 :idx)
from tqdm import tqdm # 顯示進度條 def load_dateset(num_of_data):human_vocab = set()machine_vocab = set()dataset = []Tx = 30 # 日期最大長度for i in tqdm(range(num_of_data)):h, m, _ = load_date()if h is not None:dataset.append((h, m))human_vocab.update(tuple(h))machine_vocab.update(tuple(m))human = dict(zip(sorted(human_vocab)+['<unk>', '<pad>'],list(range(len(human_vocab)+2))))# x 字符:idx 的映射inv_machine = dict(enumerate(sorted(machine_vocab)))# idx : y 字符machine = {v : k for k, v in inv_machine.items()}# y 字符 : idxreturn dataset, human, machine, inv_machinem = 10000 # 樣本個數 dataset, human_vocab, machine_vocab, inv_machine_vocab = load_dateset(m)
  • 日期(char序列)轉 ids 序列,并且 pad / 截斷
import numpy as np from keras.utils import to_categoricaldef string_to_int(string, length, vocab):string = string.lower().replace(',','')if len(string) > length: # 長了,截斷string = string[:length]rep = list(map(lambda x : vocab.get(x, '<unk>'), string))# 對string里每個char 使用 匿名函數 獲取映射的id,沒有的話,使用unk的id,map返回迭代器,轉成listif len(string) < length:rep += [vocab['<pad>']]*(length-len(string))# 長度不夠,加上 pad 的 idreturn rep # 返回 [ids,...]
  • 根據 ids 序列生成 one_hot 矩陣
def process_data(dataset, human_vocab, machine_vocab, Tx, Ty):X,Y = zip(*dataset)print("處理前 X:{}".format(X))print("處理前 Y:{}".format(Y))X = np.array([string_to_int(date, Tx, human_vocab) for date in X])Y = [string_to_int(date, Ty, machine_vocab) for date in Y]print("處理后 X的shape:{}".format(X.shape))print("處理后 Y: {}".format(Y))Xoh = np.array(list(map(lambda x : to_categorical(x, num_classes=len(human_vocab)), X)))Yoh = np.array(list(map(lambda x : to_categorical(x, num_classes=len(machine_vocab)), Y)))return X, np.array(Y), Xoh, Yoh Tx = 30 # 輸入長度 Ty = 10 # 輸出長度 X, Y, Xoh, Yoh = process_data(dataset, human_vocab, machine_vocab, Tx, Ty)


檢查生成的 one_hot 編碼矩陣維度

print(X.shape) print(Y.shape) print(Xoh.shape) print(Yoh.shape)

輸出:

(10000, 30) (10000, 10) (10000, 30, 37) (10000, 10, 11)

3. 模型

  • softmax 激活函數,求注意力權重
from keras import backend as K def softmax(x, axis=1):ndim = K.ndim(x)if ndim == 2:return K.softmax(x)elif ndim > 2:e = K.exp(x - K.max(x, axis=axis, keepdims=True))s = K.sum(e, axis=axis, keepdims=True)return e/selse:raise ValueError('維度不對,不能是1維')
  • 模型組件
from keras.layers import RepeatVector, LSTM, Concatenate, \Dense, Activation, Dot, Input, Bidirectionalrepeator = RepeatVector(Tx) # 重復 Tx 次 # 重復器 # Input shape: # 2D tensor of shape `(num_samples, features)`. # # Output shape: # 3D tensor of shape `(num_samples, n, features)`. concator = Concatenate(axis=-1) # 拼接器 densor1 = Dense(10, activation='tanh') # FC densor2 = Dense(1, activation='relu') # FC activator = Activation(softmax, name='attention_weights') # 計算注意力權重 dotor = Dot(axes=1) # 加權
  • 模型
def one_step_attention(h, s_prev):s_prev = repeator(s_prev) # 將前一個輸出狀態重復 Tx 次concat = concator([h, s_prev]) # 與 全部句子狀態 拼接e = densor1(concat) # 經過 FCenergies = densor2(e) # 經過FCalphas = activator(energies) # 得到注意力權重context = dotor([alphas, h]) # 跟原句子狀態做attentionreturn context # 得到上下文向量,后序輸入到解碼器# 解碼器,是一個單向LSTM n_h = 32 n_s = 64 post_activation_LSTM_cell = LSTM(n_s, return_state=True) # 單向LSTM output_layer = Dense(len(machine_vocab), activation=softmax) # FC 輸出預測值from keras.models import Model def model(Tx, Ty, n_h, n_s, human_vocab_size, machine_vocab_size):X = Input(shape=(Tx,human_vocab_size), name='input_first')s0 = Input(shape=(n_s,),name='s0')c0 = Input(shape=(n_s,),name='c0')s = s0c = c0outputs = []h = Bidirectional(LSTM(n_h, return_sequences=True))(X) # 編碼器得到整個序列的狀態for t in range(Ty): # 解碼器 推理context = one_step_attention(h, s) # attention 得到上下文向量s, _, c = post_activation_LSTM_cell(context, initial_state=[s,c])out = output_layer(s) # FC 輸出預測outputs.append(out)model = Model(inputs=[X,s0,c0], outputs=outputs)return modelmodel = model(Tx,Ty,n_h,n_s,len(human_vocab), len(machine_vocab)) model.summary()from keras.utils import plot_model plot_model(model, to_file='model.png',show_shapes=True,rankdir='TB')

輸出:

Model: "functional_1" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_first (InputLayer) [(None, 30, 37)] 0 __________________________________________________________________________________________________ s0 (InputLayer) [(None, 64)] 0 __________________________________________________________________________________________________ bidirectional (Bidirectional) (None, 30, 64) 17920 input_first[0][0] __________________________________________________________________________________________________ repeat_vector (RepeatVector) (None, 30, 64) 0 s0[0][0] lstm[0][0] lstm[1][0] lstm[2][0] lstm[3][0] lstm[4][0] lstm[5][0] lstm[6][0] lstm[7][0] lstm[8][0] __________________________________________________________________________________________________ concatenate (Concatenate) (None, 30, 128) 0 bidirectional[0][0] repeat_vector[0][0] bidirectional[0][0] repeat_vector[1][0] bidirectional[0][0] repeat_vector[2][0] bidirectional[0][0] repeat_vector[3][0] bidirectional[0][0] repeat_vector[4][0] bidirectional[0][0] repeat_vector[5][0] bidirectional[0][0] repeat_vector[6][0] bidirectional[0][0] repeat_vector[7][0] bidirectional[0][0] repeat_vector[8][0] bidirectional[0][0] repeat_vector[9][0] __________________________________________________________________________________________________ dense (Dense) (None, 30, 10) 1290 concatenate[0][0] concatenate[1][0] concatenate[2][0] concatenate[3][0] concatenate[4][0] concatenate[5][0] concatenate[6][0] concatenate[7][0] concatenate[8][0] concatenate[9][0] __________________________________________________________________________________________________ dense_1 (Dense) (None, 30, 1) 11 dense[0][0] dense[1][0] dense[2][0] dense[3][0] dense[4][0] dense[5][0] dense[6][0] dense[7][0] dense[8][0] dense[9][0] __________________________________________________________________________________________________ attention_weights (Activation) (None, 30, 1) 0 dense_1[0][0] dense_1[1][0] dense_1[2][0] dense_1[3][0] dense_1[4][0] dense_1[5][0] dense_1[6][0] dense_1[7][0] dense_1[8][0] dense_1[9][0] __________________________________________________________________________________________________ dot (Dot) (None, 1, 64) 0 attention_weights[0][0] bidirectional[0][0] attention_weights[1][0] bidirectional[0][0] attention_weights[2][0] bidirectional[0][0] attention_weights[3][0] bidirectional[0][0] attention_weights[4][0] bidirectional[0][0] attention_weights[5][0] bidirectional[0][0] attention_weights[6][0] bidirectional[0][0] attention_weights[7][0] bidirectional[0][0] attention_weights[8][0] bidirectional[0][0] attention_weights[9][0] bidirectional[0][0] __________________________________________________________________________________________________ c0 (InputLayer) [(None, 64)] 0 __________________________________________________________________________________________________ lstm (LSTM) [(None, 64), (None, 33024 dot[0][0] s0[0][0] c0[0][0] dot[1][0] lstm[0][0] lstm[0][2] dot[2][0] lstm[1][0] lstm[1][2] dot[3][0] lstm[2][0] lstm[2][2] dot[4][0] lstm[3][0] lstm[3][2] dot[5][0] lstm[4][0] lstm[4][2] dot[6][0] lstm[5][0] lstm[5][2] dot[7][0] lstm[6][0] lstm[6][2] dot[8][0] lstm[7][0] lstm[7][2] dot[9][0] lstm[8][0] lstm[8][2] __________________________________________________________________________________________________ dense_2 (Dense) (None, 11) 715 lstm[0][0] lstm[1][0] lstm[2][0] lstm[3][0] lstm[4][0] lstm[5][0] lstm[6][0] lstm[7][0] lstm[8][0] lstm[9][0] ================================================================================================== Total params: 52,960 Trainable params: 52,960 Non-trainable params: 0 ________________________________________________________________________________________________

4. 訓練

from keras.optimizers import Adam # 優化器 opt = Adam(learning_rate=0.005, decay=0.01) # 配置模型 model.compile(optimizer=opt, loss='categorical_crossentropy',metrics=['accuracy'])# 初始化 解碼器狀態 s0 = np.zeros((m, n_s)) c0 = np.zeros((m, n_s)) outputs = list(Yoh.swapaxes(0, 1)) # Yoh shape 10000*10*11,調換0,1軸,為10*10000*11 # outputs list,長度 10, 每個里面是array 10000*11history = model.fit([Xoh, s0, c0], outputs,epochs=10, batch_size=128,validation_split=0.1)
  • 繪制 loss 和 各位置的準確率
from matplotlib import pyplot as plt import pandas as pd his = pd.DataFrame(history.history) print(his.columns) loss = history.history['loss'] val_loss = history.history['val_loss']plt.plot(loss, label='train Loss') plt.plot(val_loss, label='valid Loss') plt.title('Training and Validation Loss') plt.legend() plt.grid() plt.show()# 列 具體的名字根據運行次數,會有變化 col_train_acc = ('dense_7_accuracy', 'dense_7_1_accuracy', 'dense_7_2_accuracy','dense_7_3_accuracy', 'dense_7_4_accuracy', 'dense_7_5_accuracy','dense_7_6_accuracy', 'dense_7_7_accuracy', 'dense_7_8_accuracy','dense_7_9_accuracy') col_test_acc = ('val_dense_7_accuracy', 'val_dense_7_1_accuracy','val_dense_7_2_accuracy', 'val_dense_7_3_accuracy','val_dense_7_4_accuracy', 'val_dense_7_5_accuracy','val_dense_7_6_accuracy', 'val_dense_7_7_accuracy','val_dense_7_8_accuracy', 'val_dense_7_9_accuracy') train_acc = pd.DataFrame(history.history[c] for c in col_train_acc) test_acc = pd.DataFrame(history.history[c] for c in col_test_acc)train_acc.plot() plt.title('Training Accuracy on pos') plt.legend() plt.grid() plt.show()test_acc.plot() plt.title('Validation Accuracy on pos') plt.legend() plt.grid() plt.show()

5. 測試

s0 = np.zeros((1, n_s)) c0 = np.zeros((1, n_s)) test_data,_,_,_ = load_dateset(10) for x,y in test_data:print(x + " ==> " +y) for x,_ in test_data:source = string_to_int(x, Tx, human_vocab)source = np.array(list(map(lambda a : to_categorical(a, num_classes=len(human_vocab)), source)))source = source[np.newaxis, :]pred = model.predict([source, s0, c0])pred = np.argmax(pred, axis=-1)output = [inv_machine_vocab[int(i)] for i in pred]print('source:',x)print('output:',''.join(output))

輸出:

18 april 2014 ==> 2014-04-18 saturday august 22 1998 ==> 1998-08-22 october 22 1995 ==> 1995-10-22 thursday february 29 1996 ==> 1996-02-29 wednesday october 17 1979 ==> 1979-10-17 7 12 73 ==> 1973-12-07 9/30/01 ==> 2001-09-30 22 may 2001 ==> 2001-05-22 7 march 1979 ==> 1979-03-07 19 feb 2013 ==> 2013-02-19

預測10個,錯誤了4個,日期字符不完全正確

source: 18 april 2014 output: 2014-04-18 source: saturday august 22 1998 output: 1998-08-22 source: october 22 1995 output: 1995-12-22 # 錯誤 10 月 source: thursday february 29 1996 output: 1996-02-29 source: wednesday october 17 1979 output: 1979-10-17 source: 7 12 73 output: 1973-02-07 # 錯誤 12月 source: 9/30/01 output: 2001-05-00 # 錯誤 09-30 source: 22 may 2001 output: 2011-05-22 # 錯誤 2001 source: 7 march 1979 output: 1979-03-07 source: 19 feb 2013 output: 2013-02-19

總結

以上是生活随笔為你收集整理的使用注意力机制建模 - 标准化日期格式的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。