日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 运维知识 > windows >内容正文

windows

吴恩达入驻知乎,涨粉秒过万!知乎首答:如何系统学习机器学习

發布時間:2024/7/5 windows 41 豆豆
生活随笔 收集整理的這篇文章主要介紹了 吴恩达入驻知乎,涨粉秒过万!知乎首答:如何系统学习机器学习 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

文 | 賣萌醬

大家好,我是賣萌醬。

昨天在知乎timeline上刷到一個問題:

雖然賣萌醬已經不需要系統學習機器學習了,但無意間發現最高贊的id竟然叫“吳恩達”??

好家伙,看了看回答日期,是4月8號。

戳進去主頁...

回答 1,關注者12614...

原來真的是本尊入駐了😂

翻了翻大佬的知乎首答評論區,發現把知乎CEO周源也炸出來了,大佬的能量果然很在線

于是,本著回味青春的目的,賣萌醬開始認真看起了大佬的首答,竟然是中英雙語的,這里轉載一下:

Do you want to become an AI professional? The key to machine learning mastery is to approach your learning systematically!

Machine learning is the science of making a computer perform work without explicit programming. ?In the past decade, machine learning has enabled utilities such as self-driving cars, real-time speech recognition, efficient web search, and boosting our knowledge of the human genome. Many researchers believe that machine learning promises the greatest possibility in realizing human-level AI.

Here, I‘d like to share three steps to learn machine learning in a systematic way: First, you should learn coding basics. Second, you should study machine learning and deep learning. Third, you should focus on the role you would like to have. ?Fundamental programming skills are a prerequisite for building machine learning systems. You will need to be able to write a simple computer program (function calls, for loops, conditional statements, basic mathematical operations) before you can start implementing preliminary machine learning algorithms. Knowing more math can give you an edge, but it won’t be necessary to spend much time on specific mathematical issues such as linear algebra, probability and statistics.

Having gained some fundamental coding skills, you can officially begin your journey of machine learning. My Machine Learning course from Stanford University is a great choice. It provides a general introduction to machine learning, data mining, and the statistical approach of pattern recognition. The course will also help you to develop your practical understanding of how to use machine learning in the real world. For instance, when to use supervised learning, unsupervised learning, and machine learning. ?The machine learning course draws insights from numerous case studies and applications. It is suitable for learning how to apply algorithms to a wide-variety of tasks, such as intelligent robots building (perception, control), natural language understanding (web search, anti-spam emails), computer vision (identifying diseases in medical imagery, finding defects in manufacturing), and much more.

Deep learning is a subset of machine learning that is growing more important, and is worth your attention as well. It uses neural networks to make powerful predictions, and is the driving force behind many of today’s most exciting technologies. For example, self-driving cars, advanced web search, and face recognition all use deep learning. The Deep Learning Specialization, developed by DeepLearning.AI, covers the knowledge you need to build deep learning applications in fields such as computer vision, natural language processing, and speech recognition. You will conduct case studies in healthcare, autonomous driving, sign language reading, music creation, and natural language processing, so you can familiarize yourself with the practical application of deep learning in various industries while mastering theoretical knowledge at the same time.

Once you have learned the foundations of machine learning and deep learning, the next move depends on the role you have in mind. For example, do you want to be a data scientist, ?engineer, or machine learning researcher? Or, do you consider developing AI skills to complement your existing expertise? If so, you can learn AI as a way to better apply your expertise to real-world problems.

After deciding the role, it's time to move on to real practice. You’ll want to get experience working on projects and as a part of a team. Identifying viable and valuable projects is an important skill, and it’s one that you’ll continue to develop throughout your career. The best way to start is to volunteer to help with other peoples’ projects. Eventually you will develop the confidence and experience to lead your own. For completing a project, teamwork is more likely to succeed than solo effort. It is critical to have the ability to collaborate with others, give and take advice, as this helps you build connections. Teamwork also helps you build out your network of professional connections. You can call on people who you have worked with in the past to provide advice and support as you move through your career.

The ultimate goal, of course, is to find a job in machine learning. This will come after you have acquired both theoretical knowledge as well as practical experience. When looking for a job, don’t be shy about reaching out to people you have met while taking courses or working on projects. You can also connect directly with professionals who are already working in the field. Many of them are happy to act as your mentor. ?Finding your first job, however, is a small step in a long-term career. It is important to cultivate self-discipline and commit to constant learning. People around you may not be able to tell whether you spend your weekends studying or on your smartphone, but day by day, and year over year, it will make a difference. Discipline ensures that you move forward while staying healthy.

I hope these suggestions could open the door to machine learning and help get you job-ready. The journey ahead will surely be a bumpy one, but rest assured that what you encounter along the way will help you succeed.

By the way, courses from DeepLearning.AI will be available on Zhihu soon. Stay tuned and see you next time!

Keep Learning!

Andrew

想要成為一名人工智能從業者?系統學習機器學習是重點!

機器學習是一門不需要進行明確編程就能使計算機發揮作用的科學。在過去的十年里,機器學習已經為我們提供了自動駕駛汽車、實時語音識別、高效網絡搜索等實用工具,并幫助我們極大地提升了對人類基因組的認知。許多研究人員都認為發展機器學習是向人類水平的人工智能邁進的最好方式。

這里向大家提供三個系統學習機器學習的步驟:學習基礎編碼知識、學習機器學習及深度學習、專注于一個角色。

想要成功構建機器學習系統,基本的編程技能是先決條件。在開始實踐簡單的機器學習算法之前,你需要具備編寫一個簡單的計算機程序(函數調用,for loops,條件語句,基本的數學操作)的能力。雖然掌握更多數學知識能讓你更具優勢,但也不必將精力過多投入到諸如線性代數、概率和統計這樣的數學基礎上。

在學習了基礎編碼知識后,就可以正式開始你的機器學習之旅了。由斯坦福大學推出的“機器學習課程”是你不錯的選擇。該課程提供了對機器學習、數據挖掘和統計模式識別的廣泛介紹,能幫助大家有效構建對機器學習的認知和理解。主要內容包括:監督學習、無監督學習和機器學習的最佳實踐。

該課程從大量的案例研究和應用中汲取經驗,便于大家學習如何將學習算法應用于構建智能機器人(感知、控制)、文本理解(網絡搜索、反垃圾郵件)、計算機視覺等任務。

此外,深度學習也是你需要涉獵的領域。由DeepLearning.AI開發的“深度學習專業課程”涵蓋了你在計算機視覺、自然語言處理和語音識別等領域構建應用程序所需的知識。你將從醫療保健、自動駕駛、手語閱讀、音樂生成和自然語言處理等方面開展案例研究,以便于在掌握理論知識的基礎上了解深度學習在各行業中的實際應用。

當你對機器學習和深度學習都有了較為深入的學習后,下一步行動將取決于你心中想要成為的角色,例如成為數據科學家、機器學習工程師或機器學習研究員等,亦或是將所學的AI技能與你目前從事的工作相結合,將人工智能更好地應用于現實世界問題。

確定角色之后就要邁入真正的實踐環節了。對此,項目選擇和團隊合作至關重要。確定可行和有價值的項目是一個重要的步驟,必須在你的職業生涯中反復實踐。在完成項目的過程中,團隊合作比單打獨斗更容易取得成功。與他人合作、提供及聽取建議的能力至關重要,這能幫助你在協作過程中建立廣泛的關系網。當你需要幫助或建議的時候,擁有一個強大的職業關系網能夠助你前行。

在積累了一定的機器學習理論知識和實踐經驗后,找到一份相關的工作看似是每個人的最終目標,但它只是漫長職業生涯中的一小步。你需要保持自律,不斷學習。身邊的人并不清楚你把周末的時間是用在學習還是刷手機上了,但隨著時間的推移,他們終將注意到差異。自律的生活可以幫助你在保持健康的同時繼續進步。

希望上述建議能為你打開機器學習的大門,從初學者一路走向從業者。這條路注定是寬闊卻不平坦的,但這一路上遇到的人和事都將助你走向成功。

我的深度學習相關課程也將在近期登錄知乎,敬請關注,我們下次再見!

請繼續學習!

吳恩達

最后用一張圖結尾:

后臺回復關鍵詞【入群

加入賣萌屋NLP、CV、搜推廣與求職討論群

后臺回復關鍵詞【頂會

獲取ACL、CIKM等各大頂會論文集!

總結

以上是生活随笔為你收集整理的吴恩达入驻知乎,涨粉秒过万!知乎首答:如何系统学习机器学习的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 久久久国产一区二区 | 成人精品影院 | 日本超碰在线 | 国产亚洲一区二区三区 | 国产片网站 | 97成人在线观看 | 亚洲人午夜射精精品日韩 | 欧美日韩亚 | 久久高清无码电影 | jizz色| 成人短视频在线免费观看 | 亚洲国产一区二区在线观看 | 在线观看黄网址 | 久久女 | 色婷婷av777 麻豆传媒网站 | 自拍三级视频 | 调教91| 久久久九九九九 | 久久久ww | 不卡二区| 干欧美少妇 | 精品国产视频 | 国产第一av| 日韩久久av| 大尺度做爰呻吟舌吻网站 | 无码人妻久久一区二区三区蜜桃 | 依依成人综合 | 91大神网址 | 在线观看的av | 好吊色这里只有精品 | 亚洲国产精品无码久久 | 一区二区久久久 | 91蜜桃传媒精品久久久一区二区 | 亚洲美女性生活视频 | 91视频爱爱 | 日本福利一区二区 | 天天色天天看 | 久操超碰 | 亚洲精品乱码久久久久久 | 亚洲自拍中文字幕 | 抖音视频在线观看 | 可以免费观看的毛片 | 日韩视频在线观看一区二区 | 黄色在线观看免费视频 | 日本午夜激情视频 | 香蕉色综合 | 撸久久| 国产专区一区二区 | 日本福利一区二区三区 | 一边顶弄一边接吻 | 国产黄色网址在线观看 | 午夜影院在线 | 美女尻逼视频 | 国产精品日韩电影 | 免费av小说 | 性少妇videosexfre | 日本久久久久久 | 丰满大乳少妇在线观看网站 | 一区二区三区免费视频观看 | 免费观看理伦片在线播放视频软件 | 黄色av影视 | 69re视频 | 国产特黄级aaaaa片免 | 在线观看二区 | www.日本在线 | 9久久9毛片又大又硬又粗 | porn国产| 亚洲av无码一区二区三区人 | 国产第七页 | 亚洲精品乱码久久久久久9色 | 狠狠干天天 | 91大神小宝寻花在线观看 | 成人毛片在线免费观看 | 午夜婷婷 | 日本黄色a级片 | 日韩在线二区 | 久久久精品一区二区 | 蜜桃av成人永久免费 | 国产真实偷伦视频 | 久久精品在线视频 | 日本成人网址 | 久久影视网 | 久久久国产精品无码 | 成人三级影院 | 超碰在线播放97 | 宇都宫紫苑在线播放 | 婷婷亚洲综合五月天小说 | 日韩高清一区二区 | 国产真实乱在线更新 | 久久久久久无码午夜精品直播 | 五月天丁香久久 | www毛片com | 欧美性受xxx黑人xyx性爽 | 天天天天操 | 青青草婷婷 | 精品一区二区在线看 | 免费看的黄色小视频 | 午夜肉伦伦影院 | 免费的性爱视频 |