从信息检索顶会CIKM'20看搜索、推荐与计算广告新进展
文 | 谷育龍Eric
源 |?搜索推薦廣告排序藝術(shù)
我是谷育龍Eric,研究方向有深度學(xué)習(xí)、搜索推薦,喜歡為大家分享深度學(xué)習(xí)在搜索推薦廣告排序應(yīng)用的文章。CIKM作為信息檢索、數(shù)據(jù)挖掘等領(lǐng)域的國際一流會(huì)議,每年都有很多搜索推薦廣告領(lǐng)域的精彩論文。近日,CIKM 2020于10月19-23日在線上召開,工業(yè)界搜索推薦廣告的算法又取得了什么新進(jìn)展呢?本文和大家分享下Alibaba, JD, Tencent, Baidu, Huawei, Amazon, Google, Microsoft, LinkedIn, Yahoo等互聯(lián)網(wǎng)公司的線上算法技術(shù)。
公眾號(hào)【夕小瑤的賣萌屋】后臺(tái)回復(fù) 【CIKM2020】 可打包下載本文相關(guān)paper和CIKM論文集。
Matching (召回)
[1] 2020 (Microsoft) (CIKM) TwinBERT: Distilling Knowledge to Twin-Structured Compressed BERT Models for Large-Scale Retrieval
作者:Wenhao Lu, Jian Jiao and Ruofei Zhang
在召回階段,如何根據(jù)Query、用戶狀態(tài)等,召回最相關(guān)的item?Microsoft在這篇論文里提出基于知識(shí)蒸餾和Bert的檢索模型,來解決大規(guī)模召回問題。
[2] 2020 (JD) (CIKM) Decoupled Graph Convolution Network for Inferring Substitutable and Complementary Items
作者:Yiding Liu, Yulong Gu, Zhuoye Ding, Junchao Gao, Ziyi Guo, Yongjun Bao and Weipeng Yan
相似相關(guān)關(guān)系挖掘,是推薦系統(tǒng)召回階段最重要的問題。GNN在挖掘圖中的節(jié)點(diǎn)關(guān)系任務(wù)上取得了state-of-the-art的效果,但一般的GNN為每個(gè)節(jié)點(diǎn)學(xué)習(xí)一個(gè)embedding,無法很好的建模節(jié)點(diǎn)的多種特性、節(jié)點(diǎn)間的多種關(guān)系。JD這篇論文里,提出為每一個(gè)節(jié)點(diǎn)學(xué)習(xí)兩個(gè)embedding,同時(shí)建模、聯(lián)合學(xué)習(xí)相似相關(guān)兩種關(guān)系,巧妙地解決了這個(gè)問題。
[3] 2020 (Amazon) (CIKM) P-Companion : A Principled Framework for Diversified Complementary Product Recommendation
作者:Junheng Hao, Tong Zhao, Jin Li, Xin Luna Dong, Christos Faloutsos, Yizhou Sun and Wei Wang
互補(bǔ)(或相關(guān))商品推薦在電商中具有重要的作用,Amazon這篇論文提出基于GNN的模型,同時(shí)建??紤]了互補(bǔ)商品推薦時(shí)的相關(guān)性和多樣性問題。
Ranking (排序)
[4] 2020 (JD) (CIKM) Deep Multifaceted Transformers for Multi-objective Ranking in Large-Scale E-commerce Recommender Systems
作者:Yulong Gu, Zhuoye Ding, Shuaiqiang Wang, Lixin Zou, Yiding Liu and Dawei Yin
在排序階段,用戶多種行為序列如何更精細(xì)化地建模、多任務(wù)如何更好的共同學(xué)習(xí)、如何解決Bias問題?JD這篇論文給出了工業(yè)界實(shí)用高效的解決方案。
相似的排序模型,在淘寶搜索、推薦 [37] 等場(chǎng)景,同樣取得了很好的線上效果。搜索和推薦排序模型,共同的特性是:給定user和context (搜索中主要關(guān)注query, 推薦中主要關(guān)注長(zhǎng)短期行為),給待排序item打分,不同點(diǎn)在于:在推薦中通常使用待排序item做target attention,在搜索中通常使用user和query做target attention,而且搜索中行為序列構(gòu)造時(shí)可以只需要選取和query預(yù)測(cè)類目相同的歷史行為。
[5] 2020 (Alibaba) (CIKM) Search-based User Interest Modeling with Lifelong Sequential Behavior Data for Click-Through Rate Prediction
作者:Qi Pi, Xiaoqiang Zhu, Guorui Zhou, Yujing Zhang, Zhe Wang, Lejian Ren, Ying Fan and Kun Gai
CTR預(yù)測(cè)中通??紤]用戶近期的行為,Alibaba介紹了如何通過從用戶長(zhǎng)期行為搜索最相關(guān)的行為,來更完整地建模用戶的興趣。
[6] 2020 (Alibaba) (CIKM) MTBRN : Multiplex Target-Behavior Relation Enhanced Network for Click-Through Rate Prediction
作者:Yufei Feng, Fuyu Lv, Binbin Hu, Fei Sun, Kun Kuang, Yang Liu, Qingwen Liu and Wenwu Ou
CTR模型在建模用戶行為序列時(shí),通常使用序列行為建模embedding信息。Alibaba的這篇論文,介紹了如何利用item-item相似關(guān)系圖、知識(shí)圖譜等信息,來更好地建模item間更豐富多樣的關(guān)系。
[7] 2020 (Alibaba) (CIKM) Deep Time-Aware Item Evolution Network for Click-Through Rate Prediction
作者:Xiang Li, Chao Wang, Bin Tong, Jiwei Tan, Xiaoyi Zeng and Tao Zhuang
已有的論文通常考慮user下item的行為序列,Alibaba這篇論文里,介紹了如何考慮每個(gè)item下最近交互的用戶和時(shí)間信息,來更好地建模item的動(dòng)態(tài)變化特性(例如新款爆品),實(shí)現(xiàn)CTR預(yù)測(cè)。
[8] 2020 (Alibaba) (CIKM) Personalized Flight Itinerary Ranking at Fliggy
作者:Jinhong Huang, Yang Li, Shan Sun, Bufeng Zhang and Jin Huang
旅行網(wǎng)站搜索如何做?Alibaba這篇論文介紹了飛豬搜索排序中如何利用attention機(jī)制,建模context信息、輸入間的關(guān)系以及同時(shí)考慮個(gè)人和群組的行為。
[9] 2020 (Linkedin) (CIKM) Efficient Neural Query Auto Completion
作者:Sida Wang, Weiwei Guo, Huiji Gao and Bo Long
Query自動(dòng)補(bǔ)全,作為搜索的入口,對(duì)用戶體驗(yàn)至關(guān)重要。Linkedin這篇論文,介紹了如何在召回和排序中建模context信息、query的深度語義信息。
[10] 2020 (Twitter) (CIKM) Relevance Ranking for Real Time Tweet Search
作者:Yan Xia, Yu Sun, Tian Wang, Juan Manuel Caicedo Carvajal, Jinliang Fan, Bhargav Mangipudi, Lisa Huang and Yatharth Sar
相關(guān)性是搜索中的重要任務(wù),Twitter場(chǎng)景下時(shí)效性很強(qiáng),query和item變化都非常迅速,加大了相關(guān)性任務(wù)的挑戰(zhàn)性。這篇論文介紹了Twitter多階段相關(guān)性排序的系統(tǒng)。
[11] 2020 (Huawei) (CIKM) Ensembled CTR Prediction via Knowledge Distillation
作者:Jieming Zhu, Jinyang Liu, Weiqi Li, Jincai Lai, Xiuqiang He, Liang Chen and Zibin Zheng
Huawei這篇論文介紹了在知識(shí)蒸餾中,使用多個(gè)Teacher網(wǎng)絡(luò),學(xué)習(xí)得到更好的student CTR模型。
[12] 2020 (LinkedIn) (CIKM) DeText : A Deep Text Ranking Framework with BERT
作者:Weiwei Guo, Xiaowei Liu, Sida Wang, Huiji Gao, Ananth Sankar, Zimeng Yang, Qi Guo, Liang Zhang, Bo Long, Bee-Chung Chen and Deepak Agarwa
BERT是非常強(qiáng)大的文本建模模型,但對(duì)于線上要求低延遲的場(chǎng)景來說模型過于復(fù)雜。LinkedIn這篇論文介紹了如何構(gòu)造一個(gè)有效的基于BERT的搜索排序模型。
Post-ranking(重排序)
重排序階段,如何考慮多樣性等問題,生成更好的Top-K結(jié)果?
[13] 2020 (Alibaba) (CIKM) EdgeRec: Recommender System on Edge in Mobile Taobao
作者:Yu Gong, Ziwen Jiang, Yufei Feng, Binbin Hu, Kaiqi Zhao, Qingwen Liu and Wenwu Ou
推薦系統(tǒng)如何做到在端上實(shí)時(shí)響應(yīng)用戶反饋,對(duì)結(jié)果重排序?Alibaba這篇Awesome的論文給出了非常精彩的解決方案,在線上取得了很好的效果。
[14] 2020 (Huawei) (CIKM) Personalized Re-ranking with Item Relationships for E-commerce
作者:Weiwen Liu, Qing Liu, Ruiming Tang, Junyang Chen, Xiuqiang He and Pheng Ann Heng
對(duì)于重排序問題,Huawei這篇論文將item的表示成一個(gè)異構(gòu)圖,提出一個(gè)基于GNN的框架,來建模item的關(guān)系、用戶的個(gè)性化意圖等信息。
Graph Neural Networks
[15] 2020 (Tencent) (CIKM) Graph Neural Network for Tag Ranking in Tag-enhanced Video Recommendation
作者:Qi Liu, Ruobing Xie, Lei Chen, Shukai Liu, Ke Tu, Peng Cui, Bo Zhang and Leyu Lin
騰訊微信在這篇文章提出基于GNN的tag排序模型,將user, video, tag關(guān)系建模為一個(gè)異構(gòu)圖,然后在基于transformer, GraphSAGE和FM進(jìn)行節(jié)點(diǎn)聚合,在微信看一看視頻推薦中取得了很好的效果。
Transfer Learning
[16] 2020 (Google) (CIKM) Zero-Shot Heterogeneous Transfer Learning from Recommender Systems to Cold-Start Search Retrieval
作者:Tao Wu, Ellie Ka-In Chio, Heng-Tze Cheng, Yu Du, Steffen Rendle, Dima Kuzmin, Ritesh Agarwal, Li Zhang, John Anderson, Sarvjeet Singh, Tushar Chandra, Ed Chi, Wen Li, Ankit Kumar, Xiang Ma, Alex Soares, Nitin Jindal and Pei Cao
如何借助推薦系統(tǒng)的物品間的關(guān)系,解決搜索中的冷啟動(dòng)、長(zhǎng)尾問題?Google的這個(gè)工作,是搜索、推薦共同學(xué)習(xí)的一個(gè)很好的起點(diǎn)。
[17] 2020 (Alibaba) (CIKM) MiNet : Mixed Interest Network for Cross-Domain Click-Through Rate Prediction
作者:Wentao Ouyang, Xiuwu Zhang, Lei Zhao, Jinmei Luo, Yu Zhang, Heng Zou, Zhaojie Liu and Yanlong Du
實(shí)際推薦系統(tǒng)中,通常有多個(gè)域,跨域推薦系統(tǒng)如何共同學(xué)習(xí)?Alibaba這篇論文給出了實(shí)用巧妙的解決方案,獲得了best paper的提名。
[18] 2020 (Alibaba) (CIKM) Improving Multi-Scenario Learning to Rank in E-commerce by Exploiting Task Relationships in the Label Space
作者:Pengcheng Li, Runze Li, Qing Da, An-Xiang Zeng and Lijun Zhang
搜索系統(tǒng)中,通常有多個(gè)場(chǎng)景。Alibaba這篇論文提出了在跨境電商中,基于MMoE思想,學(xué)習(xí)一個(gè)通用的模型,同時(shí)服務(wù)多個(gè)場(chǎng)景的搜索,取得了更好的效果,同時(shí)具備方便部署、減少成本的優(yōu)勢(shì)。
[19] 2020 (Rakuten) (CIKM) Learning to Profile : User Meta-Profile Network for Few-Shot Learning
作者:Hao Gong, Qifang Zhao, Tianyu Li, Derek Cho and Duykhuong Nguyen
Rakuten在這篇論文里,提出了基于Few-shot Learning的用戶畫像學(xué)習(xí),用于電商場(chǎng)景。
Reinforcement Learning
[20] 2020 (Baidu) (CIKM) Whole-Chain Recommendations
作者:Xiangyu Zhao, Long Xia, Lixin Zou, Dawei Yin, Jiliang Tang and Hui Liu
這篇MSU和Baidu的論文,介紹了如何利用基于multi-agent的強(qiáng)化學(xué)習(xí)來優(yōu)化推薦系統(tǒng)的多個(gè)場(chǎng)景,實(shí)現(xiàn)整體最優(yōu),對(duì)強(qiáng)化學(xué)習(xí)在推薦系統(tǒng)中的應(yīng)用具有很好的啟示作用。
[21] 2020 (Amazon) (CIKM) Learning to Rank in the Position Based Model with Bandit Feedback
作者:Beyza Ermis, Patrick Ernst, Yannik Stein and Giovanni Zappella
Amazon在這篇論文擴(kuò)展了經(jīng)典的contextual bandit算法,考慮了位置點(diǎn)擊模型解決bias問題,來優(yōu)化個(gè)性化推薦。
User Profiling (用戶畫像)
[22] 2020 (Tencent) (CIKM) Learning to Build User-tag Profile in Recommendation System
作者:Su Yan, Xin Chen, Ran Huo, Xu Zhang and Leyu Lin
用戶畫像是搜索推薦廣告的重要基石,騰訊微信在這篇論文中,將用戶的tag profiling問題看成一個(gè)multi-label分類問題,并使用multi-head attention和改進(jìn)的基于FM特征交叉模型,應(yīng)用到微信看一看。
更多精彩內(nèi)容
[23] 2020 (Alibaba) (CIKM) A Deep Prediction Network for Understanding Advertiser Intent and Satisfaction. Liyi Guo, Rui Lu, Haoqi Zhang, Junqi Jin, Zhenzhe Zheng, Fan Wu, Jin Li, Haiyang Xu, Han Li, Wenkai Lu, Jian Xu and Kun Gai
[24] 2020 (Alibaba) (CIKM) Multi-Channel Sellers Traffic Allocation in Large-scale E-commerce Promotion. Shen Xin, Yizhou Ye, Martin Ester, Cheng Long, Jie Zhang, Zhao Li, Kaiying Yuan and Yanghua Li
[25] 2020 (Alibaba) (CIKM) Spending Money Wisely : Online Electronic Coupon Allocation based on Real-Time User Intent Detection. Liangwei Li, Liucheng Sun, Chenwei Weng, Chengfu Huo and Weijun Ren
[26] 2020 (Didi) (CIKM) Masked-field Pre-training for User Intent Prediction. Peng Wang, Jiang Xu, Chunyi Liu, Hao Feng, Zang Li and Jieping Ye
[27] 2020 (eBay) (CIKM) Intent-Driven Similarity in E-Commerce Listings. Gilad Fuchs, Yoni Acriche, Idan Hasson and Pavel Petrov
[28] 2020 (Huawei) (CIKM) U-rank : Utility-oriented Learning to Rank with Implicit Feedback. Xinyi Dai, Jiawei Hou, Qing Liu, Yunjia Xi, Ruiming Tang, Weinan Zhang, Xiuqiang He, Jun Wang and Yong Yu
[29] 2020 (LinkedIn) (CIKM) Incorporating User Feedback into Sequence to Sequence Model Training. Michaeel Kazi, Weiwei Guo, Huiji Gao and Bo Long
[30] 2020 (Meituan) (CIKM) Query-aware Tip Generation for Vertical Search. Yang Yang, Junmei Hao, Canjia Li, Zili Wang, Jingang Wang, Fuzheng Zhang, Rao Fu, Peixu Hou, Gong Zhang and Zhongyuan Wang
[31] 2020 (Microsoft) (CIKM) AutoADR : Automatic Model Design for Ad Relevance. Yiren Chen, Yaming Yang, Hong Sun, Yujing Wang, Yu Xu, Wei Shen, Rong Zhou, Yunhai Tong, Jing Bai and Ruofei Zhang
[32] 2020 (Netease) (CIKM) Personalized Bundle Recommendation in Online Games. Qilin Deng, Kai Wang, Minghao Zhao, Zhene Zou, Runze Wu, Jianrong Tao, Changjie Fan and Liang Chen
[33] 2020 (Pingan) (CIKM) Learning Effective Representations for Person-Job Fit by Feature Fusion. Junshu Jiang, Songyun Ye, Wei Wang, Jingran Xu and Xiaosheng Luo
[34] 2020 (Yahoo) (CIKM) Learning to Create Better Ads : Generation and Ranking Approaches for Ad Creative Refinement. Shaunak Mishra, Manisha Verma, Yichao Zhou, Kapil Thadani and Wei Wang
[35] 2020 (Yahoo) (CIKM) Prospective Modeling of Users for Online Display Advertising via Deep Time-Aware Model. Djordje Gligorijevic, Jelena Gligorijevic and Aaron Flores
[36] CIKM 2020完整論文集合:https://dl.acm.org/doi/proceedings/10.1145/3340531。
[37] Chen, Qiwei, Huan Zhao, Wei Li, Pipei Huang, and Wenwu Ou. "Behavior sequence transformer for e-commerce recommendation in alibaba." DLP-KDD 2019.
我是谷育龍Eric,研究方向有深度學(xué)習(xí)、搜索推薦,喜歡為大家分享深度學(xué)習(xí)在搜索推薦廣告排序應(yīng)用的文章。歡迎大家到我的公眾號(hào)“深度學(xué)習(xí)排序藝術(shù)”進(jìn)行更多交流。
公眾號(hào)【夕小瑤的賣萌屋】后臺(tái)回復(fù) 【CIKM2020】 可打包下載本文相關(guān)paper和CIKM論文集。
后臺(tái)回復(fù)關(guān)鍵詞【入群】
加入賣萌屋NLP/IR/Rec與求職討論群
有頂會(huì)審稿人、大廠研究員、知乎大V和妹紙
等你來撩哦~
總結(jié)
以上是生活随笔為你收集整理的从信息检索顶会CIKM'20看搜索、推荐与计算广告新进展的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 卖萌屋招人啦!
- 下一篇: 哈工大博士历时半年整理的《Pytorch