日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

微软中山大学开源超强的视觉位置编码,涨点显著

發(fā)布時間:2024/7/5 编程问答 70 豆豆
生活随笔 收集整理的這篇文章主要介紹了 微软中山大学开源超强的视觉位置编码,涨点显著 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

文 | 小馬
源 | 極市平臺

1.寫在前面

由于Transformer對于序列數(shù)據(jù)進行并行操作,所以序列的位置信息就被忽略了。因此,相對位置編碼(Relative position encoding, RPE)是Transformer獲取輸入序列位置信息的重要方法,RPE在自然語言處理任務(wù)中已被廣泛使用。

但是,在計算機視覺任務(wù)中,相對位置編碼的有效性還沒有得到很好的研究,甚至還存在爭議。因此,作者在本文中先回顧了現(xiàn)有的相對位置編碼方法,并分析了它們在視覺Transformer中應(yīng)用的優(yōu)缺點。接著,作者提出了新的用于二維圖像的相對位置編碼方法(iRPE)。iRPE考慮了方向,相對距離,Query的相互作用,以及Self-Attention機制中相對位置embedding。作為一個即插即用的模塊,本文提出的iREP是簡單并且輕量級的。

實驗表明,通過使用iRPE,DeiT和DETR在ImageNet和COCO上,與原始版本相比,分別獲得了1.5%(top-1 Acc)和1.3%(mAP)的性能提升(無需任何調(diào)參)。

論文標(biāo)題:
Rethinking and Improving Relative Position Encoding for Vision Transformer

論文鏈接:
https://arxiv.org/abs/2107.14222

GitHub鏈接:
https://github.com/microsoft/AutoML/tree/main/iRPE

Arxiv訪問慢的小伙伴也可以在 【夕小瑤的賣萌屋】訂閱號后臺回復(fù)關(guān)鍵詞 【0810】 下載論文PDF~

2.研究動機

Transformer最近在計算機視覺領(lǐng)域引起了極大的關(guān)注,因為它具有強大的性能和捕獲Long-range關(guān)系的能力。然而,Transformer中的Self-Attention有一個固有的缺陷——它不能捕獲輸入token的順序。因此,Transformer在計算的時候就需要顯式的引入位置信息。

為Transformer編碼位置表示的方法主要有兩類。一個是絕對位置編碼,另一個是相對位置編碼。絕對位置編碼將輸入token的絕對位置從1編碼到最大序列長度。也就是說,每個位置都有一個單獨的編碼向量。然后將編碼向量與輸入token組合,使得模型能夠知道每個token的位置信息。相對位置編碼對輸入token之間的相對距離進行編碼,從而來學(xué)習(xí)token的相對關(guān)系。

這兩種編碼方式在NLP任務(wù)中都被廣泛應(yīng)用,并且證明是非常有效的。但是在CV任務(wù)中,它們的有效性還沒被很好的探索。因此,在本文中,作者重新思考并改進相對位置編碼在視覺Transformer中的使用。

在本文中,作者首先回顧了現(xiàn)有的相對位置編碼方法,然后提出了專門用于二維圖像的方法iRPE。

3.方法

方法背景

絕對位置編碼

由于Transformer不包含遞歸和卷積,為了使模型知道序列的順序,需要注入一些關(guān)于token位置的信息。原始Self-Attention采用了絕對位置,并添加絕對位置編碼到輸入token,用公式表示如下:

相對位置編碼

除了每個輸入token的絕對位置之外,一些研究人員還考慮了token之間的相對關(guān)系。相對位置編碼使得Transformer能夠?qū)W習(xí)token之間的相對位置關(guān)系,用公式表示如下:

回顧相對位置編碼

Shaw’s RPE

[1]提出一種Self-Attention的相對位置編碼方法。輸入token被建模為一個有向全連通圖。每條邊都代表兩個位置之間的相對位置信息。此外,作者認(rèn)為精確的相對位置信息在一定距離之外是無用的,因此引入了clip函數(shù)來減少參數(shù)量,公式表示如下:

RPE in Transformer-XL

[2]為query引入額外的bias項,并使用正弦公式進行相對位置編碼,用公式表示如下:

Huang’s RPE

[3]提出了一種同時考慮query、key和相對位置交互的方法,用公式表示如下:

RPE in SASA

上面的相對位置編碼都是針對一維的序列,[4]提出了一種對二維特征進行相對位置編碼的方法,用公式表示如下:

相對位置編碼的確定

接下來,作者引入了多種相對位置編碼方式,并進行了詳細的分析。首先,為了研究編碼是否可以獨立于輸入token,作者引入了兩種相對位置模式:Bias模式Contextual模式。然后,為了研究方向性的重要性,作者設(shè)計了兩種無向方法和兩種有向方法。

Bias Mode and Contextual Mode

以前的相對位置編碼方法都依賴于輸入token,因此,作者就思考了,相對位置的編碼信息能否獨立于輸入token來學(xué)習(xí)。基于此,作者引入相對位置編碼的Bias模式Contextual模式來研究這個問題。前者獨立于輸入token,而后者考慮了與query、key或value的交互。無論是哪種模式,相對位置編碼都可以用下面的公式表示:

對于Bias模式,編碼獨立于輸入token,可以表示成:

對于Contextual 模式,編碼考慮了與輸入token之間的交互,可以表示成:

A Piecewise Index Function

由于實際距離到計算距離的關(guān)系是多對一的關(guān)系,所以首先需要定義一個實際距離到計算距離的映射函數(shù)。先前有工作提出了采用clip函數(shù)來進行映射,如下所示:

在這種方法中,相對距離大于的位置分配給相同的編碼,因此丟失了遠距離相對位置的上下文信息。

在本文中,作者采用了一種分段函數(shù)將相對距離映射到相應(yīng)的編碼。這個函數(shù)基于一個假設(shè):越近鄰的信息越重要,并通過相對距離來分配注意力。函數(shù)如下:

如下圖所示,相比于先前的方法,本文提出的方法感知距離更長,并且對不同的距離分布施加了不同程度的注意力。

2D Relative Position Calculation

為了衡量二維圖像上兩個點的相對距離,作者提出了兩種無向方法(Euclidean method,Quantization method)和兩種有向方法(Cross method,Product method),如上圖所示。

  • Euclidean method

在Euclidean method中,作者采用了歐氏距離來衡量兩個點之間的距離,如上圖a所示:

  • Quantization method

在上述的Euclidean method中,具有不同相對距離的兩個距離可能映射到同一距離下標(biāo)(比如二維相對位置(1,0)和(1,1)都映射到距離下標(biāo)1中)。因此,作者提出Quantization method,如上圖b所示,公式如下所示:

函數(shù)可以映射一組實數(shù)到一組整數(shù)0,1,2,3,4,...。

  • Cross method

像素的位置方向?qū)D像理解也很重要,因此作者又提出了有向映射方法。Cross method分別計算水平方向和垂直方向上的編碼,然后對它們進行匯總。編碼信息如上圖c所示,公式如下:

  • Product method

如果一個方向上的距離相同(水平或垂直),Cross method將會把不同的相對位置編碼到相同的embedding中。因此,作者又提出了Product method,如上圖d所示,公式如下所示:

高效實現(xiàn)

對于Contextual模式的相對位置編碼,編碼信息可以通過下面的方式得到:

但是這么做的計算復(fù)雜度是,所以作者在實現(xiàn)的時候就只計算了不同映射位置的位置編碼,如下所示:

這樣做就可以將計算復(fù)雜度降低到,對于圖像分割這種任務(wù),k是遠小于n的,就可以大大降低計算量。

4.實驗

相關(guān)位置編碼分析

  • Directed-Bias v.s. Undirected-Contextual

上表的結(jié)果表明了:1)無論使用哪種方法,Contextual模式都比Bias模式具有更好的性能。2)在視覺Transformer中,有向方法通常比無向方法表現(xiàn)更好。

  • Shared v.s. Unshared

對于bias模式,在head上共享編碼時,準(zhǔn)確度會顯著下降。相比之下,在contextual模式中,兩種方案之間的性能差距可以忽略不計。

  • Piecewise v.s. Clip.

上表比較了clip函數(shù)和分段函數(shù)的影響,在圖像分類任務(wù)中,這兩個函數(shù)之間的性能差距非常小,甚至可以忽略不計。但是從下表中可以看出,在檢測任務(wù)中,兩個函數(shù)性能還是有明顯差距的。

  • Number of buckets

bucket數(shù)量影響了模型的參數(shù),上圖展示了不同bucket數(shù)量下,模型準(zhǔn)確率的變化。

  • Component-wise analysis

從上表可以看出,相對位置編碼和絕對位置編碼對DeiT模型的精度都有很大幫助。

  • Complexity Analysis

上圖表明,本文方法在高效實現(xiàn)的情況下最多需要1%的額外計算成本。

在圖像分類任務(wù)上的表現(xiàn)

通過僅在key上添加相對位置編碼,將DeiT-Ti/DeiT-S/DeiT-B模型分別提升了1.5%/1.0%/0.6%的性能。

在目標(biāo)檢測任務(wù)上的表現(xiàn)

在DETR中絕對位置嵌入優(yōu)于相對位置嵌入,這與分類中的結(jié)果相反。作者推測DETR需要絕對位置編碼的先驗知識來定位目標(biāo)。

可視化

上圖展示了Contextual模式下相對位置編碼(RPE)的可視化。

5. 總結(jié)

本文作者回顧了現(xiàn)有的相對位置編碼方法,并提出了四種專門用于視覺Transformer的方法。作者通過實驗證明了通過加入相對位置編碼,與baseline模型相比,在檢測和分類任務(wù)上都有比較大的性能提升。此外,作者通過對不同位置編碼方式的比較和分析,得出了下面幾個結(jié)論:

1)相對位置編碼可以在不同的head之間參數(shù)共享,能夠在contextual模式下實現(xiàn)與非共享相當(dāng)?shù)男阅堋?/p>

2)在圖像分類任務(wù)中,相對位置編碼可以代替絕對位置編碼。然而,絕對位置編碼對于目標(biāo)檢測任務(wù)是必須的,它需要用絕對位置編碼來預(yù)測目標(biāo)的位置。

3)相對位置編碼應(yīng)考慮位置方向性,這對于二維圖像是非常重要的。

4)相對位置編碼迫使淺層的layer更加關(guān)注局部的patch。

后臺回復(fù)關(guān)鍵詞【入群

加入賣萌屋NLP/IR/Rec與求職討論群

后臺回復(fù)關(guān)鍵詞【頂會

獲取ACL、CIKM等各大頂會論文集!

?

[1].Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations. ACL, 2018.

[2].Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell,Quoc Le, and Ruslan Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length context. In ACL,2019.

[3].Zhiheng Huang, Davis Liang, Peng Xu, and Bing Xiang. Improve transformer models with better relative position embeddings. In EMNLP, 2020

[4].Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and Jonathon Shlens. ?Standalone self-attention in vision models. arXiv preprint arXiv:1906.05909, 2019.

總結(jié)

以上是生活随笔為你收集整理的微软中山大学开源超强的视觉位置编码,涨点显著的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。