日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

12种NumpyPandas高效技巧

發(fā)布時間:2024/7/5 编程问答 42 豆豆
生活随笔 收集整理的這篇文章主要介紹了 12种NumpyPandas高效技巧 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

文 | Kunal Dhariwal

本文分享給大家?12 種 Numpy 和 Pandas 函數(shù),這些高效的函數(shù)會令數(shù)據(jù)分析更為容易、便捷。最后,讀者也可以在 GitHub 項目中找到本文所用代碼的 Jupyter Notebook。

項目地址:
https://github.com/kunaldhariwal/12-Amazing-Pandas-NumPy-Functions

Numpy 的 6 種高效函數(shù)

首先從 Numpy 開始。Numpy 是用于科學(xué)計算的 Python 語言擴展包,通常包含強大的 N 維數(shù)組對象、復(fù)雜函數(shù)、用于整合 C/C++和 Fortran 代碼的工具以及有用的線性代數(shù)、傅里葉變換和隨機數(shù)生成能力。

除了上面這些明顯的用途,Numpy 還可以用作通用數(shù)據(jù)的高效多維容器(container),定義任何數(shù)據(jù)類型。這使得 Numpy 能夠?qū)崿F(xiàn)自身與各種數(shù)據(jù)庫的無縫、快速集成。

接下來一一解析 6 種 Numpy 函數(shù)。

argpartition()

借助于 argpartition(),Numpy 可以找出 N 個最大數(shù)值的索引,也會將找到的這些索引輸出。然后我們根據(jù)需要對數(shù)值進行排序。

x?=?np.array([12,?10,?12,?0,?6,?8,?9,?1,?16,?4,?6,?0]) index_val?=?np.argpartition(x,?-4)[-4:] index_val array([1,?8,?2,?0],?dtype=int64) np.sort(x[index_val]) array([10,?12,?12,?16])

allclose()

allclose() 用于匹配兩個數(shù)組,并得到布爾值表示的輸出。如果在一個公差范圍內(nèi)(within a tolerance)兩個數(shù)組不等同,則 allclose() 返回 False。該函數(shù)對于檢查兩個數(shù)組是否相似非常有用。

array1?=?np.array([0.12,0.17,0.24,0.29]) array2?=?np.array([0.13,0.19,0.26,0.31]) #?with?a?tolerance?of?0.1,?it?should?return?False: np.allclose(array1,array2,0.1) False #?with?a?tolerance?of?0.2,?it?should?return?True: np.allclose(array1,array2,0.2) True

clip()

Clip() 使得一個數(shù)組中的數(shù)值保持在一個區(qū)間內(nèi)。有時,我們需要保證數(shù)值在上下限范圍內(nèi)。為此,我們可以借助 Numpy 的 clip() 函數(shù)實現(xiàn)該目的。給定一個區(qū)間,則區(qū)間外的數(shù)值被剪切至區(qū)間上下限(interval edge)。

x?=?np.array([3,?17,?14,?23,?2,?2,?6,?8,?1,?2,?16,?0]) np.clip(x,2,5) array([3,?5,?5,?5,?2,?2,?5,?5,?2,?2,?5,?2])

extract()

顧名思義,extract() 是在特定條件下從一個數(shù)組中提取特定元素。借助于 extract(),我們還可以使用 and 和 or 等條件。

#?Random?integers array?=?np.random.randint(20,?size=12) array array([?0,??1,??8,?19,?16,?18,?10,?11,??2,?13,?14,??3])#??Divide?by?2?and?check?if?remainder?is?1 cond?=?np.mod(array,?2)==1 cond array([False,??True,?False,??True,?False,?False,?False,??True,?False,?True,?False,??True])#?Use?extract?to?get?the?values np.extract(cond,?array) array([?1,?19,?11,?13,??3])#?Apply?condition?on?extract?directly np.extract(((array?<?3)?|?(array?>?15)),?array) array([?0,??1,?19,?16,?18,??2])

where()

Where() 用于從一個數(shù)組中返回滿足特定條件的元素。比如,它會返回滿足特定條件的數(shù)值的索引位置。Where() 與 SQL 中使用的 where condition 類似,如以下示例所示:

y?=?np.array([1,5,6,8,1,7,3,6,9])#?Where?y?is?greater?than?5,?returns?index?position np.where(y>5) array([2,?3,?5,?7,?8],?dtype=int64),)#?First?will?replace?the?values?that?match?the?condition,? #?second?will?replace?the?values?that?does?not np.where(y>5,?"Hit",?"Miss") array([?Miss?,??Miss?,??Hit?,??Hit?,??Miss?,??Hit?,??Miss?,??Hit?,??Hit?],dtype=?<U4?)

percentile()

Percentile() 用于計算特定軸方向上數(shù)組元素的第 n 個百分位數(shù)。

a?=?np.array([1,5,6,8,1,7,3,6,9]) print("50th?Percentile?of?a,?axis?=?0?:?",????????np.percentile(a,?50,?axis?=0)) 50th?Percentile?of?a,?axis?=?0?:??6.0b?=?np.array([[10,?7,?4],?[3,?2,?1]])print("30th?Percentile?of?b,?axis?=?0?:?",????????np.percentile(b,?30,?axis?=0)) 30th?Percentile?of?b,?axis?=?0?:??[5.1?3.5?1.9]

這就是 Numpy 擴展包的 6 種高效函數(shù),相信會為你帶來幫助。接下來看一看 Pandas 數(shù)據(jù)分析庫的 6 種函數(shù)。

Pandas 數(shù)據(jù)統(tǒng)計包的 6 種高效函數(shù)

Pandas 也是一個 Python 包,它提供了快速、靈活以及具有顯著表達能力的數(shù)據(jù)結(jié)構(gòu),旨在使處理結(jié)構(gòu)化 (表格化、多維、異構(gòu)) 和時間序列數(shù)據(jù)變得既簡單又直觀。

Pandas 適用于以下各類數(shù)據(jù):

  • 具有異構(gòu)類型列的表格數(shù)據(jù),如 SQL 表或 Excel 表;

  • 有序和無序 (不一定是固定頻率) 的時間序列數(shù)據(jù);

  • 帶有行/列標(biāo)簽的任意矩陣數(shù)據(jù)(同構(gòu)類型或者是異構(gòu)類型);

  • 其他任意形式的統(tǒng)計數(shù)據(jù)集。事實上,數(shù)據(jù)根本不需要標(biāo)記就可以放入 Pandas 結(jié)構(gòu)中。

Pandas 擅長處理的類型如下所示:

  • 容易處理浮點數(shù)據(jù)和非浮點數(shù)據(jù)中的 缺失數(shù)據(jù)(用 NaN 表示);

  • 大小可調(diào)整性: 可以從 DataFrame 或者更高維度的對象中插入或者是刪除列;

  • 顯式數(shù)據(jù)可自動對齊: 對象可以顯式地對齊至一組標(biāo)簽內(nèi),或者用戶可以簡單地選擇忽略標(biāo)簽,使 Series、 DataFrame 等自動對齊數(shù)據(jù);

  • 靈活的分組功能,對數(shù)據(jù)集執(zhí)行拆分-應(yīng)用-合并等操作,對數(shù)據(jù)進行聚合和轉(zhuǎn)換;

  • 簡化將數(shù)據(jù)轉(zhuǎn)換為 DataFrame 對象的過程,而這些數(shù)據(jù)基本是 Python 和 NumPy 數(shù)據(jù)結(jié)構(gòu)中不規(guī)則、不同索引的數(shù)據(jù);

  • 基于標(biāo)簽的智能切片、索引以及面向大型數(shù)據(jù)集的子設(shè)定;

  • 更加直觀地合并以及連接數(shù)據(jù)集;

  • 更加靈活地重塑、轉(zhuǎn)置(pivot)數(shù)據(jù)集;

  • 軸的分級標(biāo)記 (可能包含多個標(biāo)記);

  • 具有魯棒性的 IO 工具,用于從平面文件 (CSV 和 delimited)、 Excel 文件、數(shù)據(jù)庫中加在數(shù)據(jù),以及從 HDF5 格式中保存 / 加載數(shù)據(jù);

  • 時間序列的特定功能: 數(shù)據(jù)范圍的生成以及頻率轉(zhuǎn)換、移動窗口統(tǒng)計、數(shù)據(jù)移動和滯后等。

read_csv(nrows=n)

大多數(shù)人都會犯的一個錯誤是,在不需要.csv 文件的情況下仍會完整地讀取它。如果一個未知的.csv 文件有 10GB,那么讀取整個.csv 文件將會非常不明智,不僅要占用大量內(nèi)存,還會花很多時間。我們需要做的只是從.csv 文件中導(dǎo)入幾行,之后根據(jù)需要繼續(xù)導(dǎo)入。

import?io import?requests #?I?am?using?this?online?data?set?just?to?make?things?easier?for?you?guys url?=?"https://raw.github.com/vincentarelbundock/Rdatasets/master/csv/datasets/AirPassengers.csv" s?=?requests.get(url).content#?read?only?first?10?rows df?=?pd.read_csv(io.StringIO(s.decode(?utf-8?)),nrows=10?,?index_col=0)

map()

map( ) 函數(shù)根據(jù)相應(yīng)的輸入來映射 Series 的值。用于將一個 Series 中的每個值替換為另一個值,該值可能來自一個函數(shù)、也可能來自于一個 dict 或 Series。

#?create?a?dataframe dframe?=?pd.DataFrame(np.random.randn(4,?3),?columns=list(?bde?),?index=[?India?,??USA?,??China?,??Russia?])#compute?a?formatted?string?from?each?floating?point?value?in?frame changefn?=?lambda?x:??%.2f??%?x#?Make?changes?element-wise dframe[?d?].map(changefn)

apply()

apply() 允許用戶傳遞函數(shù),并將其應(yīng)用于 Pandas 序列中的每個值。

#?max?minus?mix?lambda?fn fn?=?lambda?x:?x.max()?-?x.min()#?Apply?this?on?dframe?that?we?ve?just?created?above dframe.apply(fn)

isin()

lsin () 用于過濾數(shù)據(jù)幀。Isin () 有助于選擇特定列中具有特定(或多個)值的行。

#?Using?the?dataframe?we?created?for?read_csv filter1?=?df["value"].isin([112])? filter2?=?df["time"].isin([1949.000000])df?[filter1?&?filter2]

copy()

Copy () 函數(shù)用于復(fù)制 Pandas 對象。當(dāng)一個數(shù)據(jù)幀分配給另一個數(shù)據(jù)幀時,如果對其中一個數(shù)據(jù)幀進行更改,另一個數(shù)據(jù)幀的值也將發(fā)生更改。為了防止這類問題,可以使用 copy () 函數(shù)。

#?creating?sample?series? data?=?pd.Series([?India?,??Pakistan?,??China?,??Mongolia?]) #?Assigning?issue?that?we?face data1=?data #?Change?a?value data1[0]=?USA? #?Also?changes?value?in?old?dataframe data#?To?prevent?that,?we?use #?creating?copy?of?series? new?=?data.copy()#?assigning?new?values? new[1]=?Changed?value?#?printing?data? print(new)? print(data)

select_dtypes()

select_dtypes() 的作用是,基于 dtypes 的列返回數(shù)據(jù)幀列的一個子集。這個函數(shù)的參數(shù)可設(shè)置為包含所有擁有特定數(shù)據(jù)類型的列,亦或者設(shè)置為排除具有特定數(shù)據(jù)類型的列。

#?We?ll?use?the?same?dataframe?that?we?used?for?read_csv framex?=??df.select_dtypes(include="float64")#?Returns?only?time?column

最后,pivot_table( ) 也是 Pandas 中一個非常有用的函數(shù)。如果對 pivot_table( ) 在 excel 中的使用有所了解,那么就非常容易上手了。

#?Create?a?sample?dataframe school?=?pd.DataFrame({?A?:?[?Jay?,??Usher?,??Nicky?,??Romero?,??Will?],????????B?:?[?Masters?,??Graduate?,??Graduate?,??Masters?,??Graduate?],????????C?:?[26,?22,?20,?23,?24]})#?Lets?create?a?pivot?table?to?segregate?students?based?on?age?and?course table?=?pd.pivot_table(school,?values?=?A?,?index?=[?B?,??C?],??????????????????????????columns?=[?B?],?aggfunc?=?np.sum,?fill_value="Not?Available")? table

原文鏈接:
https://towardsdatascience.com/12-amazing-pandas-numpy-functions-22e5671a45b8

后臺回復(fù)關(guān)鍵詞【入群

加入賣萌屋NLP/IR/Rec與求職討論群

后臺回復(fù)關(guān)鍵詞【頂會

獲取ACL、CIKM等各大頂會論文集!

總結(jié)

以上是生活随笔為你收集整理的12种NumpyPandas高效技巧的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。