python文本字符串比对_python-模糊字符串比较
python-模糊字符串比較
我正在努力完成的是一個程序,該程序讀取文件并根據原始句子比較每個句子。 與原始句子完全匹配的句子將得到1分,而與之相反的句子將得到0分。所有其他模糊句子將得到1到0分之間的分數。
我不確定要使用哪種操作在Python 3中完成此操作。
我包括了示例文本,其中文本1是原始文本,其他前面的字符串是比較文本。
文字:樣本
文字1:那是一個黑暗而暴風雨的夜晚。 我一個人坐在紅色的椅子上。 我并不孤單,因為我只有三只貓。
文字20:那是一個陰暗而暴風雨的夜晚。 我獨自一人坐在深紅色的椅子上。 我并不孤單,因為我有三只貓//應該得分最高但不能得分1
文字21:那是一個陰暗而狂暴的夜晚。 我一個人坐在一個深紅色的大教堂上。 我并不孤單,因為我有三只貓//分數應低于文字20
文字22:我一個人坐在一個深紅色的大教堂上。 我并不孤單,因為我有三只貓科動物。 那是一個陰暗而狂暴的夜晚。//分數應低于文字21,但不能低于0
文字24:那是一個黑暗而暴風雨的夜晚。 我并不孤單。 我沒有坐在紅色的椅子上。 我有三只貓。//應該得分為0!
4個解決方案
96 votes
有一個名為difflib的軟件包。通過pip安裝:
pip install fuzzywuzzy
簡單用法:
>>> from fuzzywuzzy import fuzz
>>> fuzz.ratio("this is a test", "this is a test!")
96
該軟件包建立在difflib的基礎上。您問為什么不僅僅使用它? 除了更簡單之外,它還具有許多不同的匹配方法(例如令牌順序不敏感,部分字符串匹配),這使其在實踐中更加強大。 process.extract函數特別有用:從集合中找到最佳匹配的字符串和比率。 從他們的自述文件:
偏比
>>> fuzz.partial_ratio("this is a test", "this is a test!")
100
代幣分類率
>>> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90
>>> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100
代幣設定比率
>>> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84
>>> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100
處理
>>> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
>>> process.extract("new york jets", choices, limit=2)
[('New York Jets', 100), ('New York Giants', 78)]
>>> process.extractOne("cowboys", choices)
("Dallas Cowboys", 90)
congusbongus answered 2019-10-25T04:21:53Z
79 votes
標準庫中有一個模塊(稱為SequenceMatcher),可以比較字符串并根據它們的相似性返回分數。 SequenceMatcher類應該做您想要做的。
編輯:來自python提示符的小例子:
>>> from difflib import SequenceMatcher as SM
>>> s1 = ' It was a dark and stormy night. I was all alone sitting on a red chair. I was not completely alone as I had three cats.'
>>> s2 = ' It was a murky and stormy night. I was all alone sitting on a crimson chair. I was not completely alone as I had three felines.'
>>> SM(None, s1, s2).ratio()
0.9112903225806451
HTH!
mac answered 2019-10-25T04:22:25Z
15 votes
unicode的索引和搜索速度比unicode(bytes)快得多。
from fuzzyset import FuzzySet
corpus = """It was a murky and stormy night. I was all alone sitting on a crimson chair. I was not completely alone as I had three felines
It was a murky and tempestuous night. I was all alone sitting on a crimson cathedra. I was not completely alone as I had three felines
I was all alone sitting on a crimson cathedra. I was not completely alone as I had three felines. It was a murky and tempestuous night.
It was a dark and stormy night. I was not alone. I was not sitting on a red chair. I had three cats."""
corpus = [line.lstrip() for line in corpus.split("\n")]
fs = FuzzySet(corpus)
query = "It was a dark and stormy night. I was all alone sitting on a red chair. I was not completely alone as I had three cats."
fs.get(query)
# [(0.873015873015873, 'It was a murky and stormy night. I was all alone sitting on a crimson chair. I was not completely alone as I had three felines')]
警告:注意不要在模糊集中混用unicode和bytes。
hobs answered 2019-10-25T04:22:59Z
1 votes
該任務稱為復述識別,這是自然語言處理研究的活躍領域。 我已經鏈接了幾篇最新的論文,您可以在GitHub上找到其中的許多開源代碼。
請注意,所有回答的問題均假設兩個句子之間存在某些字符串/表面相似性,而實際上兩個字符串相似性很少的句子在語義上可以相似。
如果您對這種相似性感興趣,可以使用Skip-Thoughts。根據GitHub指南安裝軟件,然后轉到自述文件中的釋義檢測部分:
import skipthoughts
model = skipthoughts.load_model()
vectors = skipthoughts.encode(model, X_sentences)
這會將您的句子(X_sentences)轉換為向量。 稍后,您可以通過以下方式找到兩個向量的相似性:
similarity = 1 - scipy.spatial.distance.cosine(vectors[0], vectors[1])
我們假設vector [0]和vector1是要查找其分數的X_sentences [0]和X_sentences1的對應向量。
還有其他將句子轉換為向量的模型,您可以在此處找到。
將句子轉換為向量后,相似度只是找到這些向量之間的余弦相似度的問題。
Ash answered 2019-10-25T04:24:05Z
總結
以上是生活随笔為你收集整理的python文本字符串比对_python-模糊字符串比较的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: c语言改变doss窗口的颜色,C语言第三
- 下一篇: C++将01数组转换为二进制对应的数值