日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人工智能 > ChatGpt >内容正文

ChatGpt

AI现状 人才短缺成为障碍

發(fā)布時間:2024/9/3 ChatGpt 42 豆豆
生活随笔 收集整理的這篇文章主要介紹了 AI现状 人才短缺成为障碍 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

簡介:?最新的調(diào)查告訴我們在企業(yè)領域 AI 應用到了怎樣的程度(已經(jīng)從原型向生產(chǎn)階段過渡),調(diào)查還涉及具體技術(shù)和工具的流行程度,應用者面臨怎樣的挑戰(zhàn),以及其它一些問題。

去年,我們感覺到大家對AI的興趣已經(jīng)接近狂熱,所以我們就AI應用發(fā)起調(diào)查。調(diào)查完成之后我們分析結(jié)果,認為AI行業(yè)處在快速變化的階段,所以我們又發(fā)起一次調(diào)查,想搞清眼下AI主要應用于哪些行業(yè)。

調(diào)查花了幾周時間,收到 1388 份回應報告。最新的調(diào)查告訴我們在企業(yè)領域 AI 應用到了怎樣的程度(已經(jīng)從原型向生產(chǎn)階段過渡),調(diào)查還涉及具體技術(shù)和工具的流行程度,應用者面臨怎樣的挑戰(zhàn),以及其它一些問題。

下面讓我們總結(jié)一下:
關(guān)鍵調(diào)查結(jié)果:

——約有 85% 的受訪機構(gòu)聲稱它們正在評估 AI,或者將 AI 應用于生產(chǎn)。只有 15% 的機構(gòu)在 AI 方面沒有采取任何行動。

——超過一半的受訪機構(gòu)是“AI 技術(shù)成熟的應用者”,換言之,它們正在用 AI 完成分析、生產(chǎn)任務。

——在成熟 AI 應用者中,監(jiān)督式學習是最流行的機器學習技術(shù),在那些仍在評估AI的機構(gòu)中,機器學習是最流行的技術(shù)。

——在 AI 應用時,缺少機器學習和 AI 技能并不是最大障礙。22% 的受訪者認為,缺少制度支持是最大問題。

——只有很少的企業(yè)用正式治理控制手段為自己的 AI 活動提供支持。

AI 仍然在發(fā)展。有許多企業(yè)正在評估 AI,用 AI 做實驗,不過在應用時,主要用于“生產(chǎn)部署”(production deployments)。這種發(fā)展仍然處在初期階段,企業(yè)還要做很多工作才能讓 AI 變得更堅固。不論怎樣,應用者為了打造穩(wěn)定的 AI 生產(chǎn)線,還有一大堆工作要做。

受訪者分布

受訪者代表所在機構(gòu)和企業(yè)接受調(diào)查,他們來自 25 個行業(yè),來自軟件行業(yè)的受訪者占 17%。從受訪樣本看,“科技行業(yè)”所占的比重并不是很高,“計算機、電子、硬件”也屬于科技行業(yè)的重要板塊,它只占了樣本的7%還不到。至于“其它”類別,它包括 12 個行業(yè),占受訪者的22%。

數(shù)據(jù)科學家占主導,企業(yè)高管具有代表性

大約六分之一的受訪者是數(shù)據(jù)科學家,高管(比如主管、副總裁、CxO)占了樣本的 26%。從調(diào)查看,受訪者的確嚴重偏向數(shù)據(jù),有 30% 的受訪者是數(shù)據(jù)科學家、數(shù)據(jù)工程師、AIOps 工程師,或者是管理他們的人。大約四分之三的受訪者宣稱自己從事的工作與數(shù)據(jù)有關(guān)。在所有受訪者中,超過 70% 從事科技類工作。

地區(qū)分布

約有 50% 的受訪者來自北美,其中大多來自美國,美國受訪者占了 40%。然后是西歐受訪者,占了 23%,亞洲占 15%。南美、東歐、大洋洲、非洲占 15%。

分析:今天的 AI 應用現(xiàn)狀

在受訪者代表的機構(gòu)中,超過一半在 AI 應用方面已經(jīng)進入“成熟”階段,也就是用 AI 分析、生產(chǎn),還有大約三分之一正在評估。再看去年的 AI 調(diào)查結(jié)果,54% 的受訪機構(gòu)聲稱在評估 AI,只有 27% 進入“成熟”階段。在 2020 年的調(diào)查中,只有 15% 的受訪機構(gòu)沒有設立任何 AI 項目。

約有 85% 的機構(gòu)正在使用 AI,當中大多用于生產(chǎn),這是一個值得關(guān)注的亮點。似乎 2019 年制定的實驗性 AI 項目今年開始開花結(jié)果。

AI 主要用在哪里呢?約有一半受訪者說他們用在研發(fā)領域,排名第二的是IT,有三分之一的受訪者選擇(請注意,這里可以多選)。

在選項中有兩個屬于企業(yè)的“功能部門”,也就是“營銷/廣告/PR”和“運營/設施/車隊管理”,每個都有大約 20% 的受訪者選擇。由此可以看出,受訪機構(gòu)看到了 AI 在功能部門的價值。

采用 AI 面臨的挑戰(zhàn)

在大多機構(gòu)內(nèi),獲得并保留 AI 特殊技能仍然是 AI 應用的一大障礙。今年,約有超過六分之一的受訪者聲稱招募并留下 AI 人才是 AI 應用的一大障礙。2019 年,大約只有 18% 的受訪者這樣認為。

但是缺少高技能人才并不是最大障礙。2020 年,大約 22% 的受訪者認為缺少機構(gòu)支持才是最大問題,2019 年也有很多人這樣認為。2019 年和 2020 年,在 AI 應用的各大障礙中,“缺少高技能人才、很難招到必要人才”排在第三位;“難以確認合適的商務用例”排在第二位,約有 20% 的受訪者選擇。

AI/ML 技能短缺

我們還問調(diào)查者:在他們的機構(gòu)中,哪些機器學習(ML)和 AI 技能最欠缺。58% 的受訪者認為最欠缺 ML 模型師、數(shù)據(jù)科學家,選擇的人最多。理解及維護一系列商務用例排在第二位,約有一半人選擇。還有 40% 的受訪者選擇“在數(shù)據(jù)工程領域缺少必要技能”。最后,還有約四分之一的人選擇“機構(gòu)缺少計算基礎設施技能”。

這項調(diào)查有一個地方很有趣:2020 年的結(jié)果和 2019 年驚人相似。2019 年的問題到了 2020 年仍然是問題,比例也基本一樣。2019 年,57% 的受訪者選擇“缺少機器學習建模和數(shù)據(jù)科學專家”,今年的比例是 58%。這些技能都是機構(gòu)必需的,而且不太容易解決。例如,數(shù)據(jù)科學家是“混合物種”,不但要掌握精深的理論、技術(shù)知識,還要具備面向特定領域的實際商業(yè)知識。

可惜,很多數(shù)據(jù)科學家缺少實踐,所以機構(gòu)只能在工作中對新晉數(shù)據(jù)科學家培訓。正因如此,才會有那么多受訪者認為:嚴重缺少理解和維護特定商務用例的人才是一大問題,2019 年有 47% 的受訪者選擇,今年上升到 49%。數(shù)據(jù)科學家利用自己掌握的特定專業(yè)知識為AI 找到適合的商務用例。機器學習建模師在實踐中積累知識,然后用這些特定商業(yè)知識補充技術(shù)知識。這兩種類型的從業(yè)者都需要提升軟技能,在團隊工作、傾聽、移情過程中提升。提升需要時間,也是經(jīng)驗的結(jié)果。

管理 AI/ML 風險

我們還問了受訪者這樣一個問題:當你們搭建部署 ML模型時有哪些風險需要控制(多選)?調(diào)查結(jié)果顯示,所有機構(gòu)(尤其是 AI 項目處于“成熟”階段的機構(gòu))全都認為應該警惕設計使用 ML/AI 技術(shù)的內(nèi)在風險。

在“成熟”機構(gòu)中,大約有三分之二的人選擇“意料之外的結(jié)果/預測”,這是最大的單一風險因素。在“成熟”機構(gòu)中,排名第二的單一風險因素是“對 ML 模型的可解釋性和透明度進行控制”,約有 55% 的人選擇;至于“正在評估”的機構(gòu),公平、偏見和道德風險排在第二位,有 40% 的人選擇。在“成熟”機構(gòu)眼中,公平、偏見和道德風險排在第三位,有 48% 的受訪者選擇。與正在評估的企業(yè)相比,“成熟”機構(gòu)更愿意對模型退化進行檢查,所以在“成熟”機構(gòu)中,AI 模型退化是是第四大風險因素(約 46% 的人選擇)。

在調(diào)查時給出的選項有 9 個,因為是多選,受訪者可以全部選擇。我們發(fā)現(xiàn),41% 的受訪者至少選擇了 4個,61% 的受訪者至少選擇 3 個。

監(jiān)督式學習成主導、深度學習持續(xù)升溫

在所有 AI 應用者中,監(jiān)督式學習技術(shù)仍然是最流行的 ML 技術(shù)。2019 年,超過 80% 的成熟應用者已經(jīng)使用這種技術(shù),當時約有三分之二的受訪機構(gòu)還處在評估階段。到了 2020 年,約有 73% 的成熟 AI 活動已經(jīng)使用監(jiān)督式學習技術(shù)。

有一點需要注意,2020 年,對于那些處于評估階段的機構(gòu)來說,深度學習技術(shù)已經(jīng)取代監(jiān)督式學習技術(shù)成為最流行的技術(shù)。數(shù)據(jù)可以說明一切:對于正在評估 AI 的機構(gòu),有 55% 聲稱他們正在使用深度學習技術(shù),有 54% 聲稱正在使用監(jiān)督式學習技術(shù)(多選)。對于成熟的 AI 應用者,約有 66% 的受訪者聲稱他們正在使用深度學習技術(shù),排在第二位,排在第一的是監(jiān)督式學習技術(shù)。

與正在評估的組織相比,在成熟接受者中,ML 或者 AI 技術(shù)的使用率更高。換言之,二者有著很大的區(qū)別。例如,在成熟接受者中,大約 23% 的 AI 活動用到了遷移學習(Transfer learning)技術(shù),而評估者只有 12%。另外,在成熟者中機回圈(Human-in-the-Loop)AI 模型更加流行。

在工作中選擇什么工具呢?78% 的受訪者選擇至少 2 種 ML 技術(shù),59% 選擇至少 3 種,39% 至少選擇 4種。

主導性工具越來越重要

在 AI 工作中,TensorFlow 仍然是最流行的工具。2019 年和 2020 年,大約 55% 的受訪者選擇了它,比重保持不變。TensorFlow 地位穩(wěn)固還告訴我們一個事實:深度學習、神經(jīng)網(wǎng)絡越來越流行。

2019 年最流行的 AI 開發(fā)工具到了 2020 年仍在流行。在最流行的 5 種 AI 工具中,有 4 種要么以Python 作為基礎,要么以 Python 作為主導。TensorFlow、Scikit-learn 和 Keras 保持穩(wěn)定,PyTorch 份額增長,達到 36%。

數(shù)據(jù)治理還不是當務之急

有超過五分之一的受訪機構(gòu)宣稱,它們引入了正式數(shù)據(jù)治理流程和(或)工具,用來支持或者補充AI項目。

26% 的受訪者回應稱會在2021 年之前引入正式數(shù)據(jù)治理流程和(或)工具,35% 預計會在未來3年引進,這是好消息。也有壞消息,AI 接受者認為數(shù)據(jù)治理只是補充,并非基本要素。

數(shù)據(jù)溯源(Data provenance)、數(shù)據(jù)沿襲 ( data lineage ) 、一致性數(shù)據(jù)定義、豐富的元數(shù)據(jù)管理及其它良好的數(shù)據(jù)治理技術(shù)將會融入 AI 項目,并非疊加在 AI 項目之上。

我們可以將數(shù)據(jù)治理看成是軟件開發(fā)過程中的“可觀察性”(observability)部分:翻新已有系統(tǒng)讓它具備可觀察性是很難的,將可觀察能力植入系統(tǒng)倒是容易一些。同樣的,為系統(tǒng)或者服務建立數(shù)據(jù)治理能力容易一些,事后添加難一些。

要點匯總

回看調(diào)查報告我們總結(jié)一些要點,機構(gòu)在推進AI項目時可以參考:

——如果沒有制定計劃對AI進行評估,那你是時候迎頭趕上了。現(xiàn)在市場上有很多開源工具、庫、教程及其它,還有平易近人的通用語言(比如Python),進入 AI 的門檻大大降低。大多企業(yè)都在用 AI 做實驗,落后是有風險的。

——AI 項目與軟件架構(gòu)、基礎設施、運營的主導趨勢保持一致。

——你可以從更宏觀的角度考慮:到處都在使用 AI,不限于研發(fā)和 IT。在調(diào)查中,許多受訪者聲稱他們在客戶服務、營銷、運營、財務及其它領域使用 AI。

——要對組織進行培育,不能只是訓練模型。在 AI 應用過程中,制度支持仍然是最大的障礙。如果你覺得 AI 能帶來助益,那就應該花點時間解釋關(guān)鍵問題,比如如何保持期待、為什么可以期待、有何期待。

——在 AI 執(zhí)行過程中會有風險存在,現(xiàn)在我們對風險有了更好的理解。當我們向高管、利益相關(guān)方解釋,告訴他們執(zhí)行 AI 項目時有何期待,解釋起來會更容易一些。

總結(jié)

很明顯,AI 正在變得成熟起來,雖然許多用例看起來很原始,但它仍然一天一天變得成熟。應用者正在采取積極措施控制常見風險。不論是成熟還是不成熟的應用者,它們都在用復雜技術(shù)做實驗,開發(fā)自己的 AI 產(chǎn)品和服務。應用者使用多種 ML 和 AI 工具,但使用的語言基本只有一種,也就是廣泛流行的 Python。如果想擴大 AI 實踐規(guī)模,企業(yè)還有幾件事要做:解決數(shù)據(jù)治理和數(shù)據(jù)調(diào)理問題。


原文鏈接:https://yqh.aliyun.com/detail/14278

總結(jié)

以上是生活随笔為你收集整理的AI现状 人才短缺成为障碍的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。