Longest Increasing Subsequence(LIS入门dp)
http://poj.org/problem?id=2533
Longest Ordered Subsequence
Time Limit: 2000MS Memory Limit: 65536K
Description
A numeric sequence of ai is ordered if a1 < a2 < … < aN. Let the subsequence of the given numeric sequence (a1, a2, …, aN) be any sequence (ai1, ai2, …, aiK), where 1 <= i1 < i2 < … < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output
Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
Sample Input
7
1 7 3 5 9 4 8
Sample Output
4
/*
下面是根據(jù)我的理解寫(xiě)的求解步驟,不足之處歡迎指出:
1.確定最優(yōu)狀態(tài):設(shè)dp[i]為序列數(shù)組中i位置上的最優(yōu)狀態(tài)2. 考慮如何達(dá)到最優(yōu)狀態(tài):即dp[i]是怎么出來(lái)的,對(duì)于i位置的最優(yōu)狀態(tài)是由i之前的(設(shè)為j,0...j < i)最大dp[j]得來(lái)的,如果a[i] > a[j],那么dp[i] = max(dp[0...j])+1否則dp[i] = max(dp[0...j])3.由2推出狀態(tài)轉(zhuǎn)移方程:dp[i] = max(dp[j]+1,dp[i])(0..j,j<i&&a[i]>a[j])4.考慮邊界:在未dp前,對(duì)于每單獨(dú)的一個(gè)數(shù),dp[i] = 1;5.write code...*/
AC_code:
總結(jié)
以上是生活随笔為你收集整理的Longest Increasing Subsequence(LIS入门dp)的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: P2055 [ZJOI2009]假期的宿
- 下一篇: 1771: 书架整理(dp)