日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程语言 > python >内容正文

python

python归一化处理_详解python实现数据归一化处理的方式:(0,1)标准化

發(fā)布時間:2024/9/3 python 61 豆豆
生活随笔 收集整理的這篇文章主要介紹了 python归一化处理_详解python实现数据归一化处理的方式:(0,1)标准化 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

在機器學(xué)習(xí)過程中,對數(shù)據(jù)的處理過程中,常常需要對數(shù)據(jù)進行歸一化處理,下面介紹(0, 1)標準化的方式,簡單的說,其功能就是將預(yù)處理的數(shù)據(jù)的數(shù)值范圍按一定關(guān)系“壓縮”到(0,1)的范圍類。

通常(0, 1)標注化處理的公式為:

即將樣本點的數(shù)值減去最小值,再除以樣本點數(shù)值最大與最小的差,原理公式就是這么基礎(chǔ)。

下面看看使用python語言來編程實現(xiàn)吧

import numpy as np

import matplotlib.pyplot as plt

def noramlization(data):

minVals = data.min(0)

maxVals = data.max(0)

ranges = maxVals - minVals

normData = np.zeros(np.shape(data))

m = data.shape[0]

normData = data - np.tile(minVals, (m, 1))

normData = normData/np.tile(ranges, (m, 1))

return normData, ranges, minVals

x = np.array([[78434.0829, 26829.86612], [78960.4042, 26855.13451], [72997.8308, 26543.79201],

[74160.2849, 26499.56629], [75908.5746, 26220.11996], [74880.6989, 26196.03995],

[74604.7169, 27096.87862], [79547.6796, 25986.68579], [74997.7791, 24021.50132],

[74487.4915, 26040.18441], [77134.2636, 24647.274], [74975.2792, 24067.31441],

[76013.5305, 24566.02273], [79191.518, 26840.29867], [80653.4589, 25937.22248],

[79185.9935, 26996.18228], [74426.881, 24227.71439], [73246.4295, 26561.59268],

[77963.1478, 25580.05298], [74469.8778, 26082.15448], [81372.3787, 26649.69232],

[76826.8262, 24549.77367], [77774.2608, 25999.96037], [79673.1361, 25229.04353],

[75251.7951, 24902.72185], [78458.073, 23924.15117], [82247.5439, 29671.33493],

[82041.2247, 27903.34268], [80083.2029, 28692.35517], [80962.0043, 28519.81002],

[79799.8328, 28740.27736], [80743.9947, 28862.75402], [80888.449, 29724.53706],

[81768.4638, 30180.20618], [80283.8783, 30417.55057], [79460.7078, 29092.52867],

[75514.1202, 28071.73721], [80595.5945, 30292.25917], [80750.4876, 29651.32254],

[80020.662, 30023.70025], [82992.3395, 29466.83067], [80185.5946, 29943.15481],

[81854.6163, 29846.18257], [81526.4017, 30218.27078], [79174.5312, 29960.69999],

[78112.3051, 26467.57545], [80262.4121, 29340.23218], [81284.9734, 28257.71529],

[81928.9905, 28752.84811], [80739.2727, 29288.85126], [83135.3435, 30223.4974],

[83131.8223, 29049.10112], [82549.9076, 28910.15209], [81574.0822, 28326.55367],

[80507.399, 28553.56851], [82956.2103, 29157.62372], [81909.7132, 29359.24497],

[80893.5603, 29326.64155], [82520.1272, 30424.96703], [82829.8548, 31062.24418],

[80532.1495, 29198.10407], [80112.7963, 29143.47905], [81175.0882, 28443.10574]])

newgroup, _, _ = noramlization(x)

newdata = newgroup

plt.scatter(x[:, 0], x[:, 1], marker='*', c='r', s=24)

plt.show()

print(len(x[:, 0]))

print(len(x[:, 1]))

print(newdata)

將數(shù)據(jù)進行歸一化處理后,并使用matplotlib繪制出處理后的散點圖分布如下:

可以看到數(shù)據(jù)的數(shù)值范圍均為(0,1)之間了

以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持我們。

本文標題: 詳解python實現(xiàn)數(shù)據(jù)歸一化處理的方式:(0,1)標準化

本文地址: http://www.cppcns.com/jiaoben/python/265791.html

總結(jié)

以上是生活随笔為你收集整理的python归一化处理_详解python实现数据归一化处理的方式:(0,1)标准化的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。