日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

[机器学习收藏] TensorFlow初学者必须了解的55个经典案例

發(fā)布時間:2024/9/15 编程问答 48 豆豆
生活随笔 收集整理的這篇文章主要介紹了 [机器学习收藏] TensorFlow初学者必须了解的55个经典案例 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

TensorFlow初學者必須了解的55個經(jīng)典案例

2017-06-191024深度學習1024深度學習 導語:本文是TensorFlow實現(xiàn)流行機器學習算法的教程匯集,目標是讓讀者可以輕松通過清晰簡明的案例深入了解 TensorFlow。這些案例適合那些想要實現(xiàn)一些?TensorFlow?案例的初學者。本教程包含還包含筆記和帶有注解的代碼。 第一步:給TF新手的教程指南

1:tf初學者需要明白的入門準備
  • 機器學習入門筆記:
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_Prerequisite/ml_introduction.ipynb
  • MNIST 數(shù)據(jù)集入門筆記
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_Prerequisite/mnist_dataset_intro.ipynb
2:tf初學者需要了解的入門基礎
  • Hello World
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/helloworld.ipynbhttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/helloworld.py
  • 基本操作
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_operations.ipynbhttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/basic_operations.py
3:tf初學者需要掌握的基本模型
  • 最近鄰:
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/nearest_neighbor.ipynbhttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/nearest_neighbor.py
  • 線性回歸:
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/linear_regression.ipynbhttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/linear_regression.py
  • Logistic 回歸:
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/logistic_regression.ipynbhttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/logistic_regression.py
4:tf初學者需要嘗試的神經(jīng)網(wǎng)絡
  • 多層感知器:
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/multilayer_perceptron.ipynbhttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/multilayer_perceptron.py
  • 卷積神經(jīng)網(wǎng)絡:
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/convolutional_network.ipynbhttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/convolutional_network.py
  • 循環(huán)神經(jīng)網(wǎng)絡(LSTM):
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/recurrent_network.ipynbhttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/recurrent_network.py
  • 雙向循環(huán)神經(jīng)網(wǎng)絡(LSTM):
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/bidirectional_rnn.ipynbhttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/bidirectional_rnn.py
  • 動態(tài)循環(huán)神經(jīng)網(wǎng)絡(LSTM)
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/dynamic_rnn.py
  • 自編碼器
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/autoencoder.ipynbhttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/autoencoder.py
5:tf初學者需要精通的實用技術
  • 保存和恢復模型
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/4_Utils/save_restore_model.ipynbhttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/save_restore_model.py
  • 圖和損失可視化
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/4_Utils/tensorboard_basic.ipynbhttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/tensorboard_basic.py
  • Tensorboard——高級可視化
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/tensorboard_advanced.py
5:tf初學者需要的懂得的多GPU基本操作
  • 多 GPU 上的基本操作
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/5_MultiGPU/multigpu_basics.ipynbhttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/5_MultiGPU/multigpu_basics.py
6:案例需要的數(shù)據(jù)集
有一些案例需要 MNIST 數(shù)據(jù)集進行訓練和測試。運行這些案例時,該數(shù)據(jù)集會被自動下載下來(使用 input_data.py)。 MNIST數(shù)據(jù)集筆記:https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_Prerequisite/mnist_dataset_intro.ipynb官方網(wǎng)站:http://yann.lecun.com/exdb/mnist/
第二步:為TF新手備的各個類型的案例、模型和數(shù)據(jù)集
初步了解:TFLearn?TensorFlow 接下來的示例來自TFLearn,這是一個為 TensorFlow 提供了簡化的接口的庫。里面有很多示例和預構建的運算和層。 使用教程:TFLearn 快速入門。通過一個具體的機器學習任務學習 TFLearn 基礎。開發(fā)和訓練一個深度神經(jīng)網(wǎng)絡分類器。 TFLearn地址:https://github.com/tflearn/tflearn示例:https://github.com/tflearn/tflearn/tree/master/examples預構建的運算和層:http://tflearn.org/doc_index/#api 筆記:https://github.com/tflearn/tflearn/blob/master/tutorials/intro/quickstart.md
基礎模型以及數(shù)據(jù)集
  • 線性回歸,使用 TFLearn 實現(xiàn)線性回歸
https://github.com/tflearn/tflearn/blob/master/examples/basics/linear_regression.py
  • 邏輯運算符。使用 TFLearn 實現(xiàn)邏輯運算符
https://github.com/tflearn/tflearn/blob/master/examples/basics/logical.py
  • 權重保持。保存和還原一個模型
https://github.com/tflearn/tflearn/blob/master/examples/basics/weights_persistence.py
  • 微調(diào)。在一個新任務上微調(diào)一個預訓練的模型
https://github.com/tflearn/tflearn/blob/master/examples/basics/finetuning.py
  • 使用 HDF5。使用 HDF5 處理大型數(shù)據(jù)集
https://github.com/tflearn/tflearn/blob/master/examples/basics/use_hdf5.py
  • 使用 DASK。使用 DASK 處理大型數(shù)據(jù)集
https://github.com/tflearn/tflearn/blob/master/examples/basics/use_dask.py
計算機視覺模型及數(shù)據(jù)集
  • 多層感知器。一種用于 MNIST 分類任務的多層感知實現(xiàn)
https://github.com/tflearn/tflearn/blob/master/examples/images/dnn.py
  • 卷積網(wǎng)絡(MNIST)。用于分類 MNIST 數(shù)據(jù)集的一種卷積神經(jīng)網(wǎng)絡實現(xiàn)
https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_mnist.py
  • 卷積網(wǎng)絡(CIFAR-10)。用于分類 CIFAR-10 數(shù)據(jù)集的一種卷積神經(jīng)網(wǎng)絡實現(xiàn)
https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_cifar10.py
  • 網(wǎng)絡中的網(wǎng)絡。用于分類 CIFAR-10 數(shù)據(jù)集的 Network in Network 實現(xiàn)
https://github.com/tflearn/tflearn/blob/master/examples/images/network_in_network.py
  • Alexnet。將 Alexnet 應用于 Oxford Flowers 17 分類任務
https://github.com/tflearn/tflearn/blob/master/examples/images/alexnet.py
  • VGGNet。將 VGGNet 應用于 Oxford Flowers 17 分類任務
https://github.com/tflearn/tflearn/blob/master/examples/images/vgg_network.py
  • VGGNet Finetuning (Fast Training)。使用一個預訓練的 VGG 網(wǎng)絡并將其約束到你自己的數(shù)據(jù)上,以便實現(xiàn)快速訓練
https://github.com/tflearn/tflearn/blob/master/examples/images/vgg_network_finetuning.py
  • RNN Pixels。使用 RNN(在像素的序列上)分類圖像
https://github.com/tflearn/tflearn/blob/master/examples/images/rnn_pixels.py
  • Highway Network。用于分類 MNIST 數(shù)據(jù)集的 Highway Network 實現(xiàn)
https://github.com/tflearn/tflearn/blob/master/examples/images/highway_dnn.py
  • Highway Convolutional Network。用于分類 MNIST 數(shù)據(jù)集的 Highway Convolutional Network 實現(xiàn)
https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_highway_mnist.py
  • Residual Network (MNIST) 。應用于 MNIST 分類任務的一種瓶頸殘差網(wǎng)絡(bottleneck residual network)
https://github.com/tflearn/tflearn/blob/master/examples/images/residual_network_mnist.py
  • Residual Network (CIFAR-10)。應用于 CIFAR-10 分類任務的一種殘差網(wǎng)絡
https://github.com/tflearn/tflearn/blob/master/examples/images/residual_network_cifar10.py
  • Google Inception(v3)。應用于 Oxford Flowers 17 分類任務的谷歌 Inception v3 網(wǎng)絡
https://github.com/tflearn/tflearn/blob/master/examples/images/googlenet.py
  • 自編碼器。用于 MNIST 手寫數(shù)字的自編碼器
https://github.com/tflearn/tflearn/blob/master/examples/images/autoencoder.py
自然語言處理模型及數(shù)據(jù)集
  • 循環(huán)神經(jīng)網(wǎng)絡(LSTM),應用 LSTM 到 IMDB 情感數(shù)據(jù)集分類任
https://github.com/tflearn/tflearn/blob/master/examples/nlp/lstm.py
  • 雙向 RNN(LSTM),將一個雙向 LSTM 應用到 IMDB 情感數(shù)據(jù)集分類任務:
https://github.com/tflearn/tflearn/blob/master/examples/nlp/bidirectional_lstm.py
  • 動態(tài) RNN(LSTM),利用動態(tài) LSTM 從 IMDB 數(shù)據(jù)集分類可變長度文本:
https://github.com/tflearn/tflearn/blob/master/examples/nlp/dynamic_lstm.py
  • 城市名稱生成,使用 LSTM 網(wǎng)絡生成新的美國城市名:
https://github.com/tflearn/tflearn/blob/master/examples/nlp/lstm_generator_cityname.py
  • 莎士比亞手稿生成,使用 LSTM 網(wǎng)絡生成新的莎士比亞手稿:
https://github.com/tflearn/tflearn/blob/master/examples/nlp/lstm_generator_shakespeare.py
  • Seq2seq,seq2seq 循環(huán)網(wǎng)絡的教學示例:
https://github.com/tflearn/tflearn/blob/master/examples/nlp/seq2seq_example.py
  • CNN Seq,應用一個 1-D 卷積網(wǎng)絡從 IMDB 情感數(shù)據(jù)集中分類詞序列
https://github.com/tflearn/tflearn/blob/master/examples/nlp/cnn_sentence_classification.py
強化學習案例
  • Atari Pacman 1-step Q-Learning,使用 1-step Q-learning 教一臺機器玩 Atari 游戲:
https://github.com/tflearn/tflearn/blob/master/examples/reinforcement_learning/atari_1step_qlearning.py
第三步:為TF新手準備的其他方面內(nèi)容
  • Recommender-Wide&Deep Network,推薦系統(tǒng)中 wide & deep 網(wǎng)絡的教學示例:
https://github.com/tflearn/tflearn/blob/master/examples/others/recommender_wide_and_deep.py
  • Spiral Classification Problem,對斯坦福 CS231n spiral 分類難題的 TFLearn 實現(xiàn):
https://github.com/tflearn/tflearn/blob/master/examples/notebooks/spiral.ipynb
  • 層,與 TensorFlow 一起使用 ?TFLearn 層:
https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/layers.py
  • 訓練器,使用 TFLearn 訓練器類訓練任何 TensorFlow 圖:
https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/layers.py
  • Bulit-in Ops,連同 TensorFlow 使用 TFLearn built-in 操作:
https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/builtin_ops.py
  • Summaries,連同 TensorFlow 使用 TFLearn summarizers:
https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/summaries.py
  • Variables,連同 TensorFlow 使用 TFLearn Variables:
https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/variables.py

總結(jié)

以上是生活随笔為你收集整理的[机器学习收藏] TensorFlow初学者必须了解的55个经典案例的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。