日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

mnist手写数字识别_手写数字识别

發(fā)布時間:2024/9/15 编程问答 32 豆豆
生活随笔 收集整理的這篇文章主要介紹了 mnist手写数字识别_手写数字识别 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

案例:? ??

????基于mnist數(shù)據(jù)集,建立mlp模型,實現(xiàn)0-9數(shù)字的十分類任務(wù):

????1.實現(xiàn)mnist數(shù)據(jù)載入,可視化圖形數(shù)字

??? 2.完成數(shù)據(jù)預(yù)處理:圖像數(shù)據(jù)維度轉(zhuǎn)換與歸一化、輸出結(jié)果格式轉(zhuǎn)換

????3.計算模型在預(yù)測數(shù)據(jù)集的準(zhǔn)確率

??? 4.模型結(jié)構(gòu):兩層隱藏層,每層有392個神經(jīng)元

mnist數(shù)據(jù)集介紹

????機(jī)器學(xué)習(xí)領(lǐng)域中非常經(jīng)典的一個數(shù)據(jù)集,由60000個訓(xùn)練樣本和10000個測試樣本組成,每個樣本都是一個28*28像素的灰度手寫數(shù)字圖片。一共4個文件,訓(xùn)練集、訓(xùn)練集標(biāo)簽、測試集、測試集標(biāo)簽。

# 加載mnist數(shù)據(jù)from?keras.datasets?import?mnist(X_train,y_train),(X_test,y_test)?=?mnist.load_data()

but.....網(wǎng)絡(luò)不行(*^_^*)

#下載mnist.npz文件本地加載import numpy as npf = np.load('mnist.npz')X_train, y_train = f['x_train'], f['y_train']X_test, y_test = f['x_test'], f['y_test']f.close()#查看數(shù)據(jù)維度print(type(X_train),X_train.shape) (60000, 28, 28)print(type(X_test),X_test.shape) (10000, 28, 28)#可視化訓(xùn)練集第一張圖片img1 = X_train[0]%matplotlib inlinefrom matplotlib import pyplot as pltfig1 = plt.figure(figsize=(3,3))plt.imshow(img1)plt.title('image size: 28 X 28')plt.show()

#查看計算機(jī)中的格式img1array([[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,
18, 18, 18, 126, 136, 175, 26, 166, 255, 247, 127, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 30, 36, 94, 154, 170,
253, 253, 253, 253, 253, 225, 172, 253, 242, 195, 64, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 49, 238, 253, 253, 253, 253,
253, 253, 253, 253, 251, 93, 82, 82, 56, 39, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 18, 219, 253, 253, 253, 253,
253, 198, 182, 247, 241, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 80, 156, 107, 253, 253,
205, 11, 0, 43, 154, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 1, 154, 253,
90, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 139, 253,
190, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 190,
253, 70, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35,
241, 225, 160, 108, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
81, 240, 253, 253, 119, 25, 0, 0, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 45, 186, 253, 253, 150, 27, 0, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 16, 93, 252, 253, 187, 0, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 249, 253, 249, 64, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 46, 130, 183, 253, 253, 207, 2, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 39,
148, 229, 253, 253, 253, 250, 182, 0, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 114, 221,
253, 253, 253, 253, 201, 78, 0, 0, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 23, 66, 213, 253, 253,
253, 253, 198, 81, 2, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 18, 171, 219, 253, 253, 253, 253,
195, 80, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 55, 172, 226, 253, 253, 253, 253, 244, 133,
11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 136, 253, 253, 253, 212, 135, 132, 16, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0]], dtype=uint8)#輸入數(shù)據(jù)格式化feature_size = img1.shape[0]*img1.shape[1]X_train_format = X_train.reshape(X_train.shape[0],feature_size)X_test_format?=?X_test.reshape(X_test.shape[0],feature_size)print(X_train_format.shape)(60000, 784)#輸入數(shù)據(jù)歸一化X_train_normal = X_train_format/255X_test_normal = X_test_format/255print(X_train_normal[0])[0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0.01176471 0.07058824 0.07058824 0.07058824
0.49411765 0.53333333 0.68627451 0.10196078 0.65098039 1.
0.96862745 0.49803922 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0.11764706 0.14117647 0.36862745 0.60392157
0.66666667 0.99215686 0.99215686 0.99215686 0.99215686 0.99215686
0.88235294 0.6745098 0.99215686 0.94901961 0.76470588 0.25098039
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.19215686
0.93333333 0.99215686 0.99215686 0.99215686 0.99215686 0.99215686
0.99215686 0.99215686 0.99215686 0.98431373 0.36470588 0.32156863
0.32156863 0.21960784 0.15294118 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0.07058824 0.85882353 0.99215686
0.99215686 0.99215686 0.99215686 0.99215686 0.77647059 0.71372549
0.96862745 0.94509804 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0.31372549 0.61176471 0.41960784 0.99215686
0.99215686 0.80392157 0.04313725 0. 0.16862745 0.60392157
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0.05490196 0.00392157 0.60392157 0.99215686 0.35294118
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0.54509804 0.99215686 0.74509804 0.00784314 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.04313725
0.74509804 0.99215686 0.2745098 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.1372549 0.94509804
0.88235294 0.62745098 0.42352941 0.00392157 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0.31764706 0.94117647 0.99215686
0.99215686 0.46666667 0.09803922 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0.17647059 0.72941176 0.99215686 0.99215686
0.58823529 0.10588235 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0.0627451 0.36470588 0.98823529 0.99215686 0.73333333
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0.97647059 0.99215686 0.97647059 0.25098039 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0.18039216 0.50980392 0.71764706 0.99215686
0.99215686 0.81176471 0.00784314 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.15294118 0.58039216
0.89803922 0.99215686 0.99215686 0.99215686 0.98039216 0.71372549
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0.09411765 0.44705882 0.86666667 0.99215686 0.99215686 0.99215686
0.99215686 0.78823529 0.30588235 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0.09019608 0.25882353 0.83529412 0.99215686
0.99215686 0.99215686 0.99215686 0.77647059 0.31764706 0.00784314
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.07058824 0.67058824
0.85882353 0.99215686 0.99215686 0.99215686 0.99215686 0.76470588
0.31372549 0.03529412 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0.21568627 0.6745098 0.88627451 0.99215686 0.99215686 0.99215686
0.99215686 0.95686275 0.52156863 0.04313725 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.53333333 0.99215686
0.99215686 0.99215686 0.83137255 0.52941176 0.51764706 0.0627451
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. ]#輸出數(shù)據(jù)(標(biāo)簽)格式化from keras.utils import to_categoricaly_train_format = to_categorical(y_train)y_test_format = to_categorical(y_test)print(y_train_format[0])[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]#查看輸入數(shù)據(jù),輸出數(shù)據(jù)維度print(X_train_normal.shape,y_train_format.shape)(60000, 784) (60000, 10)

#建立模型from keras.models import Sequentialfrom?keras.layers?import?Dense,?Activationmlp = Sequential()mlp.add(Dense(units=392,activation='relu',input_dim=784))mlp.add(Dense(units=392,activation='relu'))mlp.add(Dense(units=10,activation='softmax'))mlp.summary()

#模型相關(guān)設(shè)置mlp.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['categorical_accuracy'])#訓(xùn)練模型mlp.fit(X_train_normal,y_train_format,epochs=10)

#模型預(yù)測y_train_predict = mlp.predict_classes(X_train_normal)print(type(y_train_predict))print(y_train_predict[0:10])[5 0 4 1 9 2 1 3 1 4]from sklearn.metrics import accuracy_scoreaccuracy_train = accuracy_score(y_train,y_train_predict)print(accuracy_train)0.9972666666666666y_test_predict = mlp.predict_classes(X_test_normal)accuracy_test = accuracy_score(y_test,y_test_predict)print(accuracy_test)0.9807img2 = X_test[100]fig2 = plt.figure(figsize=(3,3))plt.imshow(img2)plt.title(y_test_predict[100])plt.show()

# coding:utf-8import matplotlib as mlpfont2 = {'family' : 'SimHei','weight' : 'normal','size' : 20,}mlp.rcParams['font.family'] = 'SimHei'mlp.rcParams['axes.unicode_minus'] = Falsea = [i for i in range(1,10)]fig4 = plt.figure(figsize=(5,5))for i in a: plt.subplot(3,3,i) plt.tight_layout() plt.imshow(X_test[i]) plt.title('predict:{}'.format(y_test_predict[i]),font2) plt.xticks([]) plt.yticks([])

總結(jié)

以上是生活随笔為你收集整理的mnist手写数字识别_手写数字识别的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 色中色综合网 | 羞羞网站在线观看 | 国产成人免费观看 | 亚洲一区中文字幕在线 | 日本不卡高字幕在线2019 | 久久久久人 | 亚洲系列第一页 | 日本吃奶摸下激烈网站动漫 | 亚洲视频日韩 | 人人看人人爱 | 穿情趣内衣被c到高潮视频 欧美性猛交xxxx黑人猛交 | 国产高清不卡一区 | 国内自拍偷拍视频 | 少妇无内裤下蹲露大唇视频 | 超碰97av在线 | 亚洲草逼 | 欧美11一13sex性hd | 小视频在线免费观看 | 亚洲精品一区二三区不卡 | 国产欧美视频在线观看 | 国产夫妻在线 | 三上悠亚在线观看一区二区 | 一区二区三区在线观 | 亚洲热在线观看 | 精品无码av一区二区三区四区 | 日日摸夜夜添狠狠添久久精品成人 | 超碰精品在线观看 | 久久精品一本 | 亚洲第一黄 | 亚洲综合视频在线 | 97精品国产97久久久久久免费 | 久久五月网 | jizzjizz欧美69巨大 | 日韩人妻一区二区三区 | av无码久久久久久不卡网站 | 日本资源在线 | 91丨porny丨成人蝌蚪 | 日韩精品中文字幕一区二区三区 | 美日韩成人 | 欧美一级一区 | 亚洲第一视频 | 男女视频免费看 | 99资源在线 | 欧美色图88 | 中文字幕在线1 | av在线中文 | 国产精品一区在线免费观看 | 成人午夜精品福利 | 性五月天 | 人人狠狠综合久久亚洲 | 好看的av网址 | 五月天激情视频 | 熟女人妻一区二区三区免费看 | 在线超碰91 | 伊人久久久 | 麻豆av毛片 | 国产成人无码性教育视频 | 色中文在线| 日本裸体xx少妇18在线 | avav亚洲 | 欧美国产综合视频 | 毛片毛片毛片毛片毛片毛片毛片毛片毛片 | 国产精品成人久久 | 毛片基地站| 国产怡红院 | 亚洲视频小说 | 亚洲熟妇一区二区 | 亚洲福利视频一区二区三区 | a级无毛片 | 好看的黄色录像 | 免费激情网站 | 国产a自拍 | 午夜影院美女 | 日日日操 | 一级黄色片看看 | 色屁屁一区二区三区视频 | 国产av国片精品 | 欧美日韩视频一区二区三区 | 日本成人一区二区 | 亚洲国产精品久久久久久6q | 亚洲激情自拍偷拍 | 男人av的天堂 | 福利在线观看 | 狠狠插视频 | 成人颜色网站 | 久久精品国产av一区二区三区 | 天天操天天干天天干 | 男人天堂1024| 精产国产伦理一二三区 | 久久精精品久久久久噜噜 | 久久成人亚洲 | 夜色资源网 | 久草网址 | 韩日午夜在线资源一区二区 | 双性人hdsexvideos | 轻点好疼好大好爽视频 | 一区二区在线播放视频 | 欧美日韩一二区 | 天天操免费视频 |