日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

kafka(一)-为什么使用kafka

發(fā)布時(shí)間:2024/9/20 编程问答 35 豆豆
生活随笔 收集整理的這篇文章主要介紹了 kafka(一)-为什么使用kafka 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

我們知道kafka是消息隊(duì)列的一種,我們要先知道為什么我們需要消息隊(duì)列,什么場(chǎng)景下我們選擇kafka。

1.為什么要用消息隊(duì)列
解耦
在項(xiàng)目啟動(dòng)之初來(lái)預(yù)測(cè)將來(lái)項(xiàng)目會(huì)碰到什么需求,是極其困難的。消息系統(tǒng)在處理過(guò)程中間插入了一個(gè)隱含的、基于數(shù)據(jù)的接口層,兩邊的處理過(guò)程都要實(shí)現(xiàn)這一接口。這允許你獨(dú)立的擴(kuò)展或修改兩邊的處理過(guò)程,只要確保它們遵守同樣的接口約束。
冗余
有些情況下,處理數(shù)據(jù)的過(guò)程會(huì)失敗。除非數(shù)據(jù)被持久化,否則將造成丟失。消息隊(duì)列把數(shù)據(jù)進(jìn)行持久化直到它們已經(jīng)被完全處理,通過(guò)這一方式規(guī)避了數(shù)據(jù)丟失風(fēng)險(xiǎn)。許多消息隊(duì)列所采用的”插入-獲取-刪除”范式中,在把一個(gè)消息從隊(duì)列中刪除之前,需要你的處理系統(tǒng)明確的指出該消息已經(jīng)被處理完畢,從而確保你的數(shù)據(jù)被安全的保存直到你使用完畢。
擴(kuò)展性
因?yàn)橄㈥?duì)列解耦了你的處理過(guò)程,所以增大消息入隊(duì)和處理的頻率是很容易的,只要另外增加處理過(guò)程即可。不需要改變代碼、不需要調(diào)節(jié)參數(shù)。擴(kuò)展就像調(diào)大電力按鈕一樣簡(jiǎn)單。
靈活性 & 峰值處理能力
在訪問(wèn)量劇增的情況下,應(yīng)用仍然需要繼續(xù)發(fā)揮作用,但是這樣的突發(fā)流量并不常見(jiàn);如果為以能處理這類(lèi)峰值訪問(wèn)為標(biāo)準(zhǔn)來(lái)投入資源隨時(shí)待命無(wú)疑是巨大的浪費(fèi)。使用消息隊(duì)列能夠使關(guān)鍵組件頂住突發(fā)的訪問(wèn)壓力,而不會(huì)因?yàn)橥话l(fā)的超負(fù)荷的請(qǐng)求而完全崩潰。
可恢復(fù)性
系統(tǒng)的一部分組件失效時(shí),不會(huì)影響到整個(gè)系統(tǒng)。消息隊(duì)列降低了進(jìn)程間的耦合度,所以即使一個(gè)處理消息的進(jìn)程掛掉,加入隊(duì)列中的消息仍然可以在系統(tǒng)恢復(fù)后被處理。
順序保證
在大多使用場(chǎng)景下,數(shù)據(jù)處理的順序都很重要。大部分消息隊(duì)列本來(lái)就是排序的,并且能保證數(shù)據(jù)會(huì)按照特定的順序來(lái)處理。Kafka保證一個(gè)Partition內(nèi)的消息的有序性。
緩沖
在任何重要的系統(tǒng)中,都會(huì)有需要不同的處理時(shí)間的元素。例如,加載一張圖片比應(yīng)用過(guò)濾器花費(fèi)更少的時(shí)間。消息隊(duì)列通過(guò)一個(gè)緩沖層來(lái)幫助任務(wù)最高效率的執(zhí)行———寫(xiě)入隊(duì)列的處理會(huì)盡可能的快速。該緩沖有助于控制和優(yōu)化數(shù)據(jù)流經(jīng)過(guò)系統(tǒng)的速度。
異步通信
很多時(shí)候,用戶不想也不需要立即處理消息。消息隊(duì)列提供了異步處理機(jī)制,允許用戶把一個(gè)消息放入隊(duì)列,但并不立即處理它。想向隊(duì)列中放入多少消息就放多少,然后在需要的時(shí)候再去處理它們。
2.為什么選擇kafka,可以通過(guò)比較其他的中間件
RabbitMQ
RabbitMQ是使用Erlang編寫(xiě)的一個(gè)開(kāi)源的消息隊(duì)列,本身支持很多的協(xié)議:AMQP,XMPP, SMTP, STOMP,也正因如此,它非常重量級(jí),更適合于企業(yè)級(jí)的開(kāi)發(fā)。同時(shí)實(shí)現(xiàn)了Broker構(gòu)架,這意味著消息在發(fā)送給客戶端時(shí)先在中心隊(duì)列排隊(duì)。對(duì)路由,負(fù)載均衡或者數(shù)據(jù)持久化都有很好的支持。
Redis
Redis是一個(gè)基于Key-Value對(duì)的NoSQL數(shù)據(jù)庫(kù),開(kāi)發(fā)維護(hù)很活躍。雖然它是一個(gè)Key-Value數(shù)據(jù)庫(kù)存儲(chǔ)系統(tǒng),但它本身支持MQ功能,所以完全可以當(dāng)做一個(gè)輕量級(jí)的隊(duì)列服務(wù)來(lái)使用。對(duì)于RabbitMQ和Redis的入隊(duì)和出隊(duì)操作,各執(zhí)行100萬(wàn)次,每10萬(wàn)次記錄一次執(zhí)行時(shí)間。測(cè)試數(shù)據(jù)分為128Bytes、512Bytes、1K和10K四個(gè)不同大小的數(shù)據(jù)。實(shí)驗(yàn)表明:入隊(duì)時(shí),當(dāng)數(shù)據(jù)比較小時(shí)Redis的性能要高于RabbitMQ,而如果數(shù)據(jù)大小超過(guò)了10K,Redis則慢的無(wú)法忍受;出隊(duì)時(shí),無(wú)論數(shù)據(jù)大小,Redis都表現(xiàn)出非常好的性能,而RabbitMQ的出隊(duì)性能則遠(yuǎn)低于Redis。
ZeroMQ
ZeroMQ號(hào)稱(chēng)最快的消息隊(duì)列系統(tǒng),尤其針對(duì)大吞吐量的需求場(chǎng)景。ZMQ能夠?qū)崿F(xiàn)RabbitMQ不擅長(zhǎng)的高級(jí)/復(fù)雜的隊(duì)列,但是開(kāi)發(fā)人員需要自己組合多種技術(shù)框架,技術(shù)上的復(fù)雜度是對(duì)這MQ能夠應(yīng)用成功的挑戰(zhàn)。ZeroMQ具有一個(gè)獨(dú)特的非中間件的模式,你不需要安裝和運(yùn)行一個(gè)消息服務(wù)器或中間件,因?yàn)槟愕膽?yīng)用程序?qū)缪葸@個(gè)服務(wù)器角色。你只需要簡(jiǎn)單的引用ZeroMQ程序庫(kù),可以使用NuGet安裝,然后你就可以愉快的在應(yīng)用程序之間發(fā)送消息了。但是ZeroMQ僅提供非持久性的隊(duì)列,也就是說(shuō)如果宕機(jī),數(shù)據(jù)將會(huì)丟失。其中,Twitter的Storm 0.9.0以前的版本中默認(rèn)使用ZeroMQ作為數(shù)據(jù)流的傳輸(Storm從0.9版本開(kāi)始同時(shí)支持ZeroMQ和Netty作為傳輸模塊)。
ActiveMQ
ActiveMQ是Apache下的一個(gè)子項(xiàng)目。 類(lèi)似于ZeroMQ,它能夠以代理人和點(diǎn)對(duì)點(diǎn)的技術(shù)實(shí)現(xiàn)隊(duì)列。同時(shí)類(lèi)似于RabbitMQ,它少量代碼就可以高效地實(shí)現(xiàn)高級(jí)應(yīng)用場(chǎng)景。
Kafka/Jafka
Kafka是Apache下的一個(gè)子項(xiàng)目,是一個(gè)高性能跨語(yǔ)言分布式發(fā)布/訂閱消息隊(duì)列系統(tǒng),而Jafka是在Kafka之上孵化而來(lái)的,即Kafka的一個(gè)升級(jí)版。具有以下特性:快速持久化,可以在O(1)的系統(tǒng)開(kāi)銷(xiāo)下進(jìn)行消息持久化;高吞吐,在一臺(tái)普通的服務(wù)器上既可以達(dá)到10W/s的吞吐速率;完全的分布式系統(tǒng),Broker、Producer、Consumer都原生自動(dòng)支持分布式,自動(dòng)實(shí)現(xiàn)負(fù)載均衡;支持Hadoop數(shù)據(jù)并行加載,對(duì)于像Hadoop的一樣的日志數(shù)據(jù)和離線分析系統(tǒng),但又要求實(shí)時(shí)處理的限制,這是一個(gè)可行的解決方案。Kafka通過(guò)Hadoop的并行加載機(jī)制統(tǒng)一了在線和離線的消息處理。Apache Kafka相對(duì)于ActiveMQ是一個(gè)非常輕量級(jí)的消息系統(tǒng),除了性能非常好之外,還是一個(gè)工作良好的分布式系統(tǒng)。
3.Kafka的使用場(chǎng)景:
日志收集:一個(gè)公司可以用Kafka可以收集各種服務(wù)的log,通過(guò)kafka以統(tǒng)一接口服務(wù)的方式開(kāi)放給各種consumer,例如hadoop、Hbase、Solr等。
消息系統(tǒng):解耦和生產(chǎn)者和消費(fèi)者、緩存消息等。
用戶活動(dòng)跟蹤:Kafka經(jīng)常被用來(lái)記錄web用戶或者app用戶的各種活動(dòng),如瀏覽網(wǎng)頁(yè)、搜索、點(diǎn)擊等活動(dòng),這些活動(dòng)信息被各個(gè)服務(wù)器發(fā)布到kafka的topic中,然后訂閱者通過(guò)訂閱這些topic來(lái)做實(shí)時(shí)的監(jiān)控分析,或者裝載到hadoop、數(shù)據(jù)倉(cāng)庫(kù)中做離線分析和挖掘。
運(yùn)營(yíng)指標(biāo):Kafka也經(jīng)常用來(lái)記錄運(yùn)營(yíng)監(jiān)控?cái)?shù)據(jù)。包括收集各種分布式應(yīng)用的數(shù)據(jù),生產(chǎn)各種操作的集中反饋,比如報(bào)警和報(bào)告。
流式處理:比如spark streaming和storm
事件源
---------------------?
作者:haoxin963?
來(lái)源:CSDN?
原文:https://blog.csdn.net/haoxin963/article/details/83245632?
版權(quán)聲明:本文為博主原創(chuàng)文章,轉(zhuǎn)載請(qǐng)附上博文鏈接!

總結(jié)

以上是生活随笔為你收集整理的kafka(一)-为什么使用kafka的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。