日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

1.18.2.10 解释表:Table.explain、物理执行计划等

發(fā)布時間:2024/9/27 编程问答 30 豆豆
生活随笔 收集整理的這篇文章主要介紹了 1.18.2.10 解释表:Table.explain、物理执行计划等 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

1.18.2.10.解釋表

Table API 提供了一種機制來解釋計算 Table 的邏輯和優(yōu)化查詢計劃。 這是通過 Table.explain() 方法或者 StatementSet.explain() 方法來完成的。Table.explain() 返回一個 Table 的計劃。StatementSet.explain() 返回多 sink 計劃的結(jié)果。它返回一個描述三種計劃的字符串:

?關(guān)系查詢的抽象語法樹(the Abstract Syntax Tree),即未優(yōu)化的邏輯查詢計劃
?優(yōu)化的邏輯查詢計劃,以及
?物理執(zhí)行計劃。
可以用 TableEnvironment.explainSql() 方法和 TableEnvironment.executeSql() 方法支持執(zhí)行一個 EXPLAIN 語句獲取邏輯和優(yōu)化查詢計劃,請參閱 EXPLAIN 頁面.

以下代碼展示了一個示例以及對給定Table使用Table.explain()方法的相應(yīng)輸出:
Java代碼:

package com.toto.demo.sql;import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.table.api.Table; import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;import static org.apache.flink.table.api.Expressions.$;public class Demo {public static void main(String[] args) {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);DataStream<Tuple2<Integer, String>> stream1 = env.fromElements(new Tuple2<>(1,"hello"));DataStream<Tuple2<Integer, String>> stream2 = env.fromElements(new Tuple2<>(1, "hello"));// explain Table APITable table1 = tEnv.fromDataStream(stream1, $("count"), $("word"));Table table2 = tEnv.fromDataStream(stream2, $("count"), $("word"));Table table = table1.where($("word").like("F%")).unionAll(table2);System.out.println(table.explain());}}

輸出結(jié)果:

== Abstract Syntax Tree == LogicalUnion(all=[true]) :- LogicalFilter(condition=[LIKE($1, _UTF-16LE'F%')]) : +- LogicalTableScan(table=[[Unregistered_DataStream_1]]) +- LogicalTableScan(table=[[Unregistered_DataStream_2]])== Optimized Logical Plan == Union(all=[true], union=[count, word]) :- Calc(select=[count, word], where=[LIKE(word, _UTF-16LE'F%')]) : +- DataStreamScan(table=[[Unregistered_DataStream_1]], fields=[count, word]) +- DataStreamScan(table=[[Unregistered_DataStream_2]], fields=[count, word])== Physical Execution Plan == Stage 1 : Data Sourcecontent : Source: Collection SourceStage 2 : Data Sourcecontent : Source: Collection SourceStage 3 : Operatorcontent : SourceConversion(table=[Unregistered_DataStream_1], fields=[count, word])ship_strategy : FORWARDStage 4 : Operatorcontent : Calc(select=[count, word], where=[(word LIKE _UTF-16LE'F%')])ship_strategy : FORWARDStage 5 : Operatorcontent : SourceConversion(table=[Unregistered_DataStream_2], fields=[count, word])ship_strategy : FORWARD

Scala代碼:

package com.toto.learn.sqlimport org.apache.flink.streaming.api.scala.StreamExecutionEnvironment import org.apache.flink.table.api.bridge.scala.StreamTableEnvironmentobject Demo {def main(args: Array[String]): Unit = {val env = StreamExecutionEnvironment.getExecutionEnvironmentval tEnv = StreamTableEnvironment.create(env)val table1 = env.fromElements((1, "hello")).toTable(tEnv, $"count", $"word")val table2 = env.fromElements((1, "hello")).toTable(tEnv, $"count", $"word")val table = table1.where($"word".like("F%")).unionAll(table2)println(table.explain())}}

以下代碼展示了一個示例以及使用StatementSet.explain()的多sink計劃的相應(yīng)輸出:

EnvironmentSettings settings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build(); TableEnvironment tEnv = TableEnvironment.create(settings);final Schema schema = new Schema().field("count", DataTypes.INT()).field("word", DataTypes.STRING());tEnv.connect(new FileSystem().path("/source/path1")).withFormat(new Csv().deriveSchema()).withSchema(schema).createTemporaryTable("MySource1"); tEnv.connect(new FileSystem().path("/source/path2")).withFormat(new Csv().deriveSchema()).withSchema(schema).createTemporaryTable("MySource2"); tEnv.connect(new FileSystem().path("/sink/path1")).withFormat(new Csv().deriveSchema()).withSchema(schema).createTemporaryTable("MySink1"); tEnv.connect(new FileSystem().path("/sink/path2")).withFormat(new Csv().deriveSchema()).withSchema(schema).createTemporaryTable("MySink2");StatementSet stmtSet = tEnv.createStatementSet();Table table1 = tEnv.from("MySource1").where($("word").like("F%")); stmtSet.addInsert("MySink1", table1);Table table2 = table1.unionAll(tEnv.from("MySource2")); stmtSet.addInsert("MySink2", table2);String explanation = stmtSet.explain(); System.out.println(explanation);

Scala代碼:

val settings = EnvironmentSettings.newInstance.useBlinkPlanner.inStreamingMode.build val tEnv = TableEnvironment.create(settings)val schema = new Schema().field("count", DataTypes.INT()).field("word", DataTypes.STRING())tEnv.connect(new FileSystem().path("/source/path1")).withFormat(new Csv().deriveSchema()).withSchema(schema).createTemporaryTable("MySource1") tEnv.connect(new FileSystem().path("/source/path2")).withFormat(new Csv().deriveSchema()).withSchema(schema).createTemporaryTable("MySource2") tEnv.connect(new FileSystem().path("/sink/path1")).withFormat(new Csv().deriveSchema()).withSchema(schema).createTemporaryTable("MySink1") tEnv.connect(new FileSystem().path("/sink/path2")).withFormat(new Csv().deriveSchema()).withSchema(schema).createTemporaryTable("MySink2")val stmtSet = tEnv.createStatementSet()val table1 = tEnv.from("MySource1").where($"word".like("F%")) stmtSet.addInsert("MySink1", table1)val table2 = table1.unionAll(tEnv.from("MySource2")) stmtSet.addInsert("MySink2", table2)val explanation = stmtSet.explain() println(explanation)

總結(jié)

以上是生活随笔為你收集整理的1.18.2.10 解释表:Table.explain、物理执行计划等的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。