日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪(fǎng)問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

【小白学习PyTorch教程】八、使用图像数据增强手段,提升CIFAR-10 数据集精确度

發(fā)布時(shí)間:2024/10/8 编程问答 36 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【小白学习PyTorch教程】八、使用图像数据增强手段,提升CIFAR-10 数据集精确度 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

@Author:Runsen

上次基于CIFAR-10 數(shù)據(jù)集,使用PyTorch ??構(gòu)建圖像分類(lèi)模型的精確度是60%,對(duì)于如何提升精確度,方法就是常見(jiàn)的transforms圖像數(shù)據(jù)增強(qiáng)手段。

import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoaderimport torchvision import torchvision.datasets as datasets import torchvision.transforms as transforms import torchvision.utils as vutilsimport numpy as np import os import warnings from matplotlib import pyplot as plt warnings.filterwarnings('ignore')` device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

加載數(shù)據(jù)集

# number of images in one forward and backward pass batch_size = 128# number of subprocesses used for data loading # Normally do not use it if your os is windows num_workers = 2train_dataset = datasets.CIFAR10('./data/CIFAR10/', train = True, download = True, transform = transform_train)train_loader = DataLoader(train_dataset, batch_size = batch_size, shuffle = True, num_workers = num_workers)val_dataset = datasets.CIFAR10('./data/CIFAR10', train = True, transform = transform_test)val_loader = DataLoader(val_dataset, batch_size = batch_size, shuffle = False, num_workers = num_workers)test_dataset = datasets.CIFAR10('./data/CIFAR10', train = False, transform = transform_test)test_loader = DataLoader(test_dataset, batch_size = batch_size, shuffle = False, num_workers = num_workers)# declare classes in CIFAR10 classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

之前的transform ’只是進(jìn)行了縮放和歸一,在這里添加RandomCrop和RandomHorizontalFlip

# define a transform to normalize the datatransform_train = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ToTensor(), # converting images to tensortransforms.Normalize(mean = (0.5, 0.5, 0.5), std = (0.5, 0.5, 0.5)) # if the image dataset is black and white image, there can be just one number. ])transform_test = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean = (0.5, 0.5, 0.5), std = (0.5, 0.5, 0.5)) ])

可視化具體的圖像

# function that will be used for visualizing the datadef imshow(img):img = img / 2 + 0.5 # unnormalizeplt.imshow(np.transpose(img, (1, 2, 0))) # convert from Tensor image# obtain one batch of imges from train dataset dataiter = iter(train_loader) images, labels = dataiter.next() images = images.numpy() # convert images to numpy for display# plot the images in one batch with the corresponding labels fig = plt.figure(figsize = (25, 4))# display images for idx in np.arange(10):ax = fig.add_subplot(1, 10, idx+1, xticks=[], yticks=[])imshow(images[idx])ax.set_title(classes[labels[idx]])

建立常見(jiàn)的CNN模型

# define the CNN architectureclass CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.main = nn.Sequential(# 3x32x32nn.Conv2d(in_channels = 3, out_channels = 32, kernel_size = 3, padding = 1), # 3x32x32 (O = (N+2P-F/S)+1)nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size = 2, stride = 2), # 32x16x16nn.BatchNorm2d(32),nn.Conv2d(32, 64, kernel_size = 3, padding = 1), # 32x16x16nn.ReLU(inplace=True),nn.MaxPool2d(2, 2), # 64x8x8nn.BatchNorm2d(64),nn.Conv2d(64, 128, 3, padding = 1), # 64x8x8nn.ReLU(inplace=True),nn.MaxPool2d(2, 2), # 128x4x4nn.BatchNorm2d(128),)self.fc = nn.Sequential(nn.Linear(128*4*4, 1024),nn.ReLU(inplace=True),nn.Dropout(0.5),nn.Linear(1024, 256),nn.ReLU(inplace=True),nn.Dropout(0.5),nn.Linear(256, 10))def forward(self, x):# Conv and Poolilng layersx = self.main(x)# Flatten before Fully Connected layersx = x.view(-1, 128*4*4) # Fully Connected Layerx = self.fc(x)return xcnn = CNN().to(device) cnn


torch.nn.CrossEntropyLoss對(duì)輸出概率介于0和1之間的分類(lèi)模型進(jìn)行分類(lèi)。

訓(xùn)練模型

# 超參數(shù):Hyper Parameters learning_rate = 0.001 train_losses = [] val_losses = []# Loss function and Optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(cnn.parameters(), lr = learning_rate)# define train function that trains the model using a CIFAR10 datasetdef train(model, epoch, num_epochs):model.train()total_batch = len(train_dataset) // batch_sizefor i, (images, labels) in enumerate(train_loader):X = images.to(device)Y = labels.to(device)### forward pass and loss calculation# forward passpred = model(X)#c alculation of loss valuecost = criterion(pred, Y)### backward pass and optimization# gradient initializationoptimizer.zero_grad()# backward passcost.backward()# parameter updateoptimizer.step()# training statsif (i+1) % 100 == 0:print('Train, Epoch [%d/%d], lter [%d/%d], Loss: %.4f' % (epoch+1, num_epochs, i+1, total_batch, np.average(train_losses)))train_losses.append(cost.item())# def the validation function that validates the model using CIFAR10 datasetdef validation(model, epoch, num_epochs):model.eval()total_batch = len(val_dataset) // batch_sizefor i, (images, labels) in enumerate(val_loader):X = images.to(device)Y = labels.to(device)with torch.no_grad():pred = model(X)cost = criterion(pred, Y)if (i+1) % 100 == 0:print("Validation, Epoch [%d/%d], lter [%d/%d], Loss: %.4f"% (epoch+1, num_epochs, i+1, total_batch, np.average(val_losses)))val_losses.append(cost.item())def plot_losses(train_losses, val_losses):plt.figure(figsize=(5, 5))plt.plot(train_losses, label='Train', alpha=0.5)plt.plot(val_losses, label='Validation', alpha=0.5)plt.xlabel('Epochs')plt.ylabel('Losses')plt.legend()plt.grid(b=True)plt.title('CIFAR 10 Train/Val Losses Over Epoch')plt.show()num_epochs = 20 for epoch in range(num_epochs):train(cnn, epoch, num_epochs)validation(cnn, epoch, num_epochs)torch.save(cnn.state_dict(), './data/Tutorial_3_CNN_Epoch_{}.pkl'.format(epoch+1))plot_losses(train_losses, val_losses)


測(cè)試模型

def test(model):# declare that the model is about to evaluatemodel.eval()correct = 0total = 0with torch.no_grad():for images, labels in test_dataset:images = images.unsqueeze(0).to(device)# forward passoutputs = model(images)_, predicted = torch.max(outputs.data, 1)total += 1correct += (predicted == labels).sum().item()print("Accuracy of Test Images: %f %%" % (100 * float(correct) / total))


經(jīng)過(guò)圖像數(shù)據(jù)增強(qiáng)。模型從60提升到了84。

測(cè)試模型在哪些類(lèi)上表現(xiàn)良好,

class_correct = list(0. for i in range(10)) class_total = list(0. for i in range(10))with torch.no_grad():for data in test_loader:images, labels = dataimages = images.to(device)labels = labels.to(device)outputs = cnn(images)_, predicted = torch.max(outputs, 1)c = (predicted == labels).squeeze()for i in range(4):label = labels[i]class_correct[label] += c[i].item()class_total[label] += 1for i in range(10):print('Accuracy of %5s : %2d %%' % (classes[i], 100 * class_correct[i] / class_total[i]))

總結(jié)

以上是生活随笔為你收集整理的【小白学习PyTorch教程】八、使用图像数据增强手段,提升CIFAR-10 数据集精确度的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 亚洲一二三区在线观看 | 久久这里有精品视频 | 中国毛片在线观看 | 欧美一级久久久 | 日韩在线视频在线观看 | 性农村xxxxx小树林 | 最新在线观看av | 成人中文字幕在线 | 国产午夜精品在线观看 | 亚洲精品福利在线观看 | 成人毛片网 | 国产剧情av麻豆香蕉精品 | 人妻精品久久久久中文字幕69 | 香蕉伊人网 | 国产欧美日韩一区二区三区 | 国产噜噜噜噜噜久久久久久久久 | 成人av免费观看 | www.欧美在线观看 | 痴女扩张宫交脱垂重口小说 | 久久精品99久久久久久久久 | 久久人人爽人人爽人人av | 亚洲第1页 | 亚洲在线观看视频 | 人人舔人人干 | 丰满人妻一区二区三区46 | 国产一区二区麻豆 | 午夜视频在线观看一区 | 国产精品久久久久久福利 | 天天干天天操天天玩 | 国产67194| 女女爱爱视频 | 日韩一区二区免费看 | 日韩欧美国产成人精品免费 | 国产精品尤物视频 | 精品网站999 | 日韩一二三区 | 亚洲精品视 | 国产精欧美一区二区三区蓝颜男同 | 麻豆影视 | 91久久精品国产91久久 | 亚洲日本在线观看视频 | 三级精品在线 | 亚洲伦理在线播放 | 538任你躁在线精品免费 | 欧美浮力影院 | 波多野结衣av中文字幕 | 69久久精品无码一区二区 | 2021国产在线视频 | 午夜88| 成人精品亚洲人成在线 | 欧美久操 | 草草影院在线播放 | 亚洲最新在线 | 在线免费看黄av | 亚洲国产成人精品久久 | 一区二区视 | 91精品国产免费 | 国产一级视频在线播放 | 亚洲第一黄 | 午夜精品久久久久久久99黑人 | 欧美又大又硬又粗bbbbb | 男人操女人免费视频 | 99精品视频在线免费观看 | 久久免费观看视频 | 野花视频免费在线观看 | 成人手机视频 | 91视频免费 | 成年人视频网 | 亚洲一区二区三区麻豆 | 亚洲av综合色区 | 国产精品爱啪在线线免费观看 | 人物动物互动39集免费观看 | 一区二区三区欧美 | 国产三区在线观看 | 成年人免费在线视频 | 91久久久久一区二区 | 亚洲精品综合在线观看 | 在线观看午夜视频 | 国产精品女人和拘 | 国产第一页屁屁影院 | 国产精品自产拍 | 日韩精品伦理 | 亚洲综合精品国产 | 国产全是老熟女太爽了 | 天天操天天射天天爱 | 黄色三级生活片 | 欧州一级片 | 亚洲精品在线免费观看视频 | 黄色精品 | 大乳护士喂奶hd | 欧美三级a做爰在线观看 | 中文字幕亚洲一区二区三区 | 精品国产亚洲av麻豆 | 男生舔女生胸 | 婷婷麻豆| 欧美日韩高清免费 | 国产精品99无码一区二区视频 | 97精品人妻一区二区三区 | 毛片基地在线观看 |