日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

HMM学习(3)-Patterns generated by a hidden process

發(fā)布時(shí)間:2024/10/12 编程问答 28 豆豆
生活随笔 收集整理的這篇文章主要介紹了 HMM学习(3)-Patterns generated by a hidden process 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

HMM學(xué)習(xí)(3)-Patterns generated by a hidden process

2007-12-18 20:31 903人閱讀 matrixsystemreturningeachalgorithmsun

3. ?Patterns generated by a hidden process

3.2 When a Markov process may not be powerful enough

In some cases the patterns that we wish to find are not described sufficiently by a Markov process. Returning to the weather example, a hermit may perhaps not have access to direct weather observations, but does have a piece of seaweed. Folklore tells us that the state of the seaweed is probabilistically related to the state of the weather - the weather and seaweed states are closely linked. In this case we have two sets of states, the observable states (the state of the seaweed) and the hidden states (the state of the weather). We wish to devise an algorithm for the hermit to forecast weather from the seaweed and the Markov assumption without actually ever seeing the weather.

?

在一些場合我們所希望找到的模式不能夠被馬爾科夫過程很好的描述。回到天氣的例子,一個(gè)隱士可能沒有辦法直接觀察到天氣,但是他有一片海藻。傳說海藻與天氣的狀態(tài)有一定的聯(lián)系。在這個(gè)例子中,我們有兩個(gè)狀態(tài)集合,可觀察的狀態(tài)(海藻的狀態(tài))和隱狀態(tài)(天氣的狀態(tài))。我們希望為隱士設(shè)計(jì)一個(gè)算法,在不能實(shí)際看到天氣的情況下,來從海藻和馬爾科夫假設(shè)中預(yù)測出天氣的狀態(tài)。

A more realistic problem is that of recognizing speech; the sound that we hear is the product of the vocal chords, size of throat, position of tongue and several other things. Each of these factors interacts to produce the sound of a word, and the sounds that a speech recognition system detects are the changing sound generated from the internal physical changes in the person speaking.

一個(gè)更實(shí)際的問題是語音識(shí)別;我們所聽到的聲音是產(chǎn)生自聲帶,喉嚨的大小,舌頭的位置和其他一些東西。每一個(gè)因素相互作用產(chǎn)生了詞語的聲音,一個(gè)語音識(shí)別系統(tǒng)所探測到的聲音都是人說話時(shí)內(nèi)部身體變化所產(chǎn)生的變化的聲音。

Some speech recognition devices work by considering the internal speech production to be a sequence of hidden states, and the resulting sound to be a sequence of observable states generated by the speech process that at best approximates the true (hidden) states. In both examples it is important to note that the number of states in the hidden process and the number of observable states may be different. In a three state weather system (sunny, cloudy, rainy) it may be possible to observe four grades of seaweed dampness (dry, dryish, damp, soggy); pure speech may be described by (say) 80 phonemes, while a physical speech system may generate a number of distinguishable sounds that is either more or less than 80.

?

一些語音識(shí)別設(shè)備認(rèn)為內(nèi)部的語音的產(chǎn)物(internal speech production,語言?)是一個(gè)隱狀態(tài)的序列,發(fā)出的聲音是一個(gè)可觀察狀態(tài)的序列,這個(gè)序列由很好的近似了真實(shí)狀態(tài)(隱狀態(tài))的語音過程所產(chǎn)生。在兩個(gè)例子中,非常重要的一點(diǎn)是,隱過程中的狀態(tài)的數(shù)量與可觀察狀態(tài)的數(shù)量會(huì)很不一樣。在3狀態(tài)的天氣系統(tǒng)中(天晴,多云,下雨),可能會(huì)觀察到海藻濕潤度的四個(gè)等級(jí)(干燥,稍干,微濕,潮濕);純語音可以被80個(gè)音素所描述,而一個(gè)人體的語音系統(tǒng)可能會(huì)產(chǎn)生非常多的不同的聲音,比80多或少。

?

In such cases the observed sequence of states is probabilistically related to the hidden process. We model such processes using a hidden Markov model where there is an underlying hidden Markov process changing over time, and a set of observable states which are related somehow to the hidden states.

?

在這些情況下,狀態(tài)的可觀察序列在一定的概率下與隱過程相關(guān)聯(lián)。我們使用隱馬爾科夫模型來對這樣的過程進(jìn)行建模,這里有一個(gè)潛在的隱馬爾科夫過程隨時(shí)間而改變,以及一個(gè)在一定程度上與隱狀態(tài)關(guān)聯(lián)的可觀察的狀態(tài)集合。

3.2 Hidden Markov Models

The diagram below shows the hidden and observable states in the weather example. It is assumed that the hidden states (the true weather) are modeled by a simple first order Markov process, and so they are all connected to each other.

?

下圖展示了在天氣的例子中的隱狀態(tài)以及可觀察狀態(tài)。它假定了隱狀態(tài)(真實(shí)的天氣)通過一個(gè)簡單的一階馬爾科夫過程來進(jìn)行建模,所以他們兩兩之間都有連接。

?

?

The connections between the hidden states and the observable states represent the probability of generating a particular observed state given that the Markov process is in a particular hidden state. It should thus be clear that all probabilities `entering' an observable state will sum to 1, since in the above case it would be the sum of Pr(Obs|Sun), Pr(Obs|Cloud) and Pr(Obs|Rain).

?

在隱狀態(tài)和可觀察狀態(tài)之間的連接表示了在給定馬爾科夫過程停留在一個(gè)特定的隱狀態(tài)時(shí)產(chǎn)生特定的觀察狀態(tài)的概率。不難看出,所有的進(jìn)入一個(gè)可觀察狀態(tài)的概率之和應(yīng)該為1,在上面的例子中就應(yīng)該是Pr(Obs|Sun), Pr(Obs|Cloud) 和 Pr(Obs|Rain)三者的和。??和底下的矩陣有什么區(qū)別??

?

In addition to the probabilities defining the Markov process, we therefore have another matrix, termed the confusion matrix, which contains the probabilities of the observable states given a particular hidden state. For the weather example the confusion matrix might be;

?

除了定義了馬爾科夫過程的概率,我們還有另外一個(gè)矩陣,稱作混合矩陣(confusion matrix,先驗(yàn)概率?),它包括了給定特定隱狀態(tài)的情況下可觀察狀態(tài)的概率。天氣的混合矩陣可以是:

?

?

Notice that the sum of each matrix row is 1.

每行之和為1。

3.3 Summary

We have seen that there are some processes where an observed sequence is probabalistically related to an underlying Markov process. In such cases, the number of observable states may be different to the number of hidden states.

?

我們已經(jīng)看到在一些過程中,可觀察序列是在一定概率下與隱藏的馬爾科夫過程相關(guān)聯(lián)。在這些例子中,可觀察狀態(tài)的數(shù)量可以與隱狀態(tài)不同。

We model such cases using a hidden Markov model (HMM). This is a model containing two sets of states and three sets of probabilities;

我們使用隱馬爾科夫模型來對這些例子進(jìn)行建模。這個(gè)模型包含了兩個(gè)狀態(tài)集合和三個(gè)概率集(哪三個(gè)?轉(zhuǎn)移概率,confusion matrix,?初始?)。

  • hidden states : the (TRUE) states of a system that may be described by a Markov process (e.g., the weather).
  • observable states : the states of the process that are `visible' (e.g., seaweed dampness).

?

confusion matrix???????????

轉(zhuǎn)載于:https://www.cnblogs.com/hyubz/p/3620375.html

與50位技術(shù)專家面對面20年技術(shù)見證,附贈(zèng)技術(shù)全景圖

總結(jié)

以上是生活随笔為你收集整理的HMM学习(3)-Patterns generated by a hidden process的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 欧美4区| 夜夜天天干 | 天堂v在线观看 | 日韩电影网站 | 国产精选自拍 | 饥渴丰满的少妇喷潮 | 哪里可以免费看毛片 | 美女试爆场恐怖电影在线观看 | 丁香伊人网 | tube国产麻豆 | 天堂8av| 国产农村妇女精品一区 | 黑人极品ⅴideos精品欧美棵 | 亚洲爆爽| 日韩色中色 | 最近2018年手机中文字幕版 | 久久黄色一级片 | 精品中文字幕视频 | 国产色爱 | 9i看片成人免费看片 | 久久99精品久久只有精品 | 欧美用舌头去添高潮 | eeuss国产一区二区三区黑人 | 摸一摸操一操 | 国产三级精品在线观看 | 色屁屁草草影院ccyycom | 一级全黄裸体片 | 国产成人综合网 | 全部孕妇毛片丰满孕妇孕交 | 另类一区二区三区 | 亚洲制服在线观看 | 完全免费在线视频 | 五月天啪啪 | 国产经典自拍 | 看片免费黄在线观看入口 | 在线久 | 欧美三日本三级少妇三级99观看视频 | 日本国产精品 | 日韩美女视频网站 | 久久国产精品一区二区三区 | 久久婷色 | 激情91 | 性av在线 | 一级色网站 | 久久久久免费精品视频 | 91网站在线免费观看 | 精品伦一区二区三区 | 97国产成人无码精品久久久 | 91超薄肉色丝袜交足高跟凉鞋 | 国产精品综合在线 | 男阳茎进女阳道视频大全 | 免费在线观看不卡av | 成人片在线播放 | 91成人国产综合久久精品 | 人妻一区二区三区四区五区 | 三级a做爰全过程 | 木木影院 | 极品福利视频 | 久久成人福利视频 | 黄色www视频 | 视频区小说区图片区 | 欧美日韩在线播放视频 | 毛片看看| 在线免费观看a视频 | 免费荫蒂添的好舒服视频 | 这里只有精品在线播放 | 国产av剧情一区二区三区 | 91久久精品国产91性色tv | a黄色片| 啪啪小视频 | 轻点好疼好大好爽视频 | 精品免费久久久 | 日韩成人动漫在线观看 | 亚洲精品一区二区在线 | 色视屏| 欧美18aaaⅹxx | 麻豆视频在线观看免费网站 | 欧美a网站 | 成人看片黄a免费看视频 | 欧美高清日韩 | 六月丁香久久 | 欧美另类视频 | 四虎精品在线观看 | 免费看a级黄色片 | 高hhhhh| 欧美一区二区三区 | 亚洲av无码国产精品麻豆天美 | 成人激情小视频 | 又黄又免费的视频 | 麻豆69 | 蜜桃久久一区二区三区 | 青青艹av| 久久久无码18禁高潮喷水 | 国产精品极品白嫩 | 日韩网站在线播放 | 国产又猛又黄 | 91午夜剧场| 黄网站免费观看 | 另类小说一区二区 |