日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

机器学习之贝叶斯垃圾邮件分类

發布時間:2024/10/12 编程问答 29 豆豆
生活随笔 收集整理的這篇文章主要介紹了 机器学习之贝叶斯垃圾邮件分类 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

代碼來源于:https://www.cnblogs.com/huangyc/p/10327209.html? ,本人只是簡介學習

1、?貝葉斯.py

import numpy as np from word_utils import *class NaiveBayesBase(object):def __init__(self):passdef fit(self, trainMatrix, trainCategory):'''樸素貝葉斯分類器訓練函數,求:p(Ci),基于詞匯表的p(w|Ci)Args:trainMatrix : 訓練矩陣,即向量化表示后的文檔(詞條集合)trainCategory : 文檔中每個詞條的列表標注Return:p0Vect : 屬于0類別的概率向量(p(w1|C0),p(w2|C0),...,p(wn|C0))p1Vect : 屬于1類別的概率向量(p(w1|C1),p(w2|C1),...,p(wn|C1))pAbusive : 屬于1類別文檔的概率'''numTrainDocs = len(trainMatrix)# 長度為詞匯表長度numWords = len(trainMatrix[0])# p(ci)self.pAbusive = sum(trainCategory) / float(numTrainDocs)# 由于后期要計算p(w|Ci)=p(w1|Ci)*p(w2|Ci)*...*p(wn|Ci),若wj未出現,則p(wj|Ci)=0,因此p(w|Ci)=0,這樣顯然是不對的# 故在初始化時,將所有詞的出現數初始化為1,分母即出現詞條總數初始化為2p0Num = np.ones(numWords)p1Num = np.ones(numWords)p0Denom = 2.0p1Denom = 2.0for i in range(numTrainDocs):if trainCategory[i] == 1:p1Num += trainMatrix[i]p1Denom += sum(trainMatrix[i])else:p0Num += trainMatrix[i]p0Denom += sum(trainMatrix[i])# p(wi | c1)# 為了避免下溢出(當所有的p都很小時,再相乘會得到0.0,使用log則會避免得到0.0)self.p1Vect = np.log(p1Num / p1Denom)# p(wi | c2)self.p0Vect = np.log(p0Num / p0Denom)return selfdef predict(self, testX):'''樸素貝葉斯分類器Args:testX : 待分類的文檔向量(已轉換成array)p0Vect : p(w|C0)p1Vect : p(w|C1)pAbusive : p(C1)Return:1 : 為侮辱性文檔 (基于當前文檔的p(w|C1)*p(C1)=log(基于當前文檔的p(w|C1))+log(p(C1)))0 : 非侮辱性文檔 (基于當前文檔的p(w|C0)*p(C0)=log(基于當前文檔的p(w|C0))+log(p(C0)))'''p1 = np.sum(testX * self.p1Vect) + np.log(self.pAbusive)p0 = np.sum(testX * self.p0Vect) + np.log(1 - self.pAbusive)if p1 > p0:return 1else:return 0def loadDataSet():'''數據加載函數。這里是一個小例子'''postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],['stop', 'posting', 'stupid', 'worthless', 'garbage'],['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]classVec = [0, 1, 0, 1, 0, 1] # 1代表侮辱性文字,0代表正常言論,代表上面6個樣本的類別return postingList, classVecdef checkNB():'''測試'''listPosts, listClasses = loadDataSet()myVocabList = createVocabList(listPosts)trainMat = []for postDoc in listPosts:trainMat.append(setOfWord2Vec(myVocabList, postDoc))nb = NaiveBayesBase()nb.fit(np.array(trainMat), np.array(listClasses))testEntry1 = ['love', 'my', 'dalmation']thisDoc = np.array(setOfWord2Vec(myVocabList, testEntry1))print(testEntry1, 'classified as:', nb.predict(thisDoc))testEntry2 = ['stupid', 'garbage']thisDoc2 = np.array(setOfWord2Vec(myVocabList, testEntry2))print(testEntry2, 'classified as:', nb.predict(thisDoc2))if __name__ == "__main__":checkNB() View Code

2、word_utils.py

def createVocabList(dataSet):'''創建所有文檔中出現的不重復詞匯列表Args:dataSet: 所有文檔Return:包含所有文檔的不重復詞列表,即詞匯表'''vocabSet = set([])# 創建兩個集合的并集for document in dataSet:vocabSet = vocabSet | set(document)return list(vocabSet)# 詞袋模型(bag-of-words model):詞在文檔中出現的次數 def bagOfWords2Vec(vocabList, inputSet):'''依據詞匯表,將輸入文本轉化成詞袋模型詞向量Args:vocabList: 詞匯表inputSet: 當前輸入文檔Return:returnVec: 轉換成詞向量的文檔例子:vocabList = ['I', 'love', 'python', 'and', 'machine', 'learning']inputset = ['python', 'machine', 'learning', 'python', 'machine']returnVec = [0, 0, 2, 0, 2, 1]長度與詞匯表一樣長,出現了的位置為1,未出現為0,如果詞匯表中無該單詞則print'''returnVec = [0] * len(vocabList)for word in inputSet:if word in vocabList:returnVec[vocabList.index(word)] += 1else:print("the word: %s is not in my vocabulary!" % word)return returnVec# 詞集模型(set-of-words model):詞在文檔中是否存在,存在為1,不存在為0 def setOfWord2Vec(vocabList, inputSet):'''依據詞匯表,將輸入文本轉化成詞集模型詞向量Args:vocabList: 詞匯表inputSet: 當前輸入文檔Return:returnVec: 轉換成詞向量的文檔例子:vocabList = ['I', 'love', 'python', 'and', 'machine', 'learning']inputset = ['python', 'machine', 'learning']returnVec = [0, 0, 1, 0, 1, 1]長度與詞匯表一樣長,出現了的位置為1,未出現為0,如果詞匯表中無該單詞則print'''returnVec = [0] * len(vocabList)for word in inputSet:if word in vocabList:returnVec[vocabList.index(word)] = 1else:print("the word: %s is not in my vocabulary!" % word)return returnVec View Code

?

轉載于:https://www.cnblogs.com/ywjfx/p/11045395.html

總結

以上是生活随笔為你收集整理的机器学习之贝叶斯垃圾邮件分类的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。