大数据之路Week10_day05 (Redis总结I)
正文
1、為什么使用redis
分析:博主覺得在項目中使用redis,主要是從兩個角度去考慮:性能和并發。當然,redis還具備可以做分布式鎖等其他功能,但是如果只是為了分布式鎖這些其他功能,完全還有其他中間件(如zookpeer等)代替,并不是非要使用redis。因此,這個問題主要從性能和并發兩個角度去答。
回答:如下所示,分為兩點
(一)性能
如下圖所示,我們在碰到需要執行耗時特別久,且結果不頻繁變動的SQL,就特別適合將運行結果放入緩存。這樣,后面的請求就去緩存中讀取,使得請求能夠迅速響應。
題外話:忽然想聊一下這個迅速響應的標準。其實根據交互效果的不同,這個響應時間沒有固定標準。不過曾經有人這么告訴我:"在理想狀態下,我們的頁面跳轉需要在瞬間解決,對于頁內操作則需要在剎那間解決。另外,超過一彈指的耗時操作要有進度提示,并且可以隨時中止或取消,這樣才能給用戶最好的體驗。"
那么瞬間、剎那、一彈指具體是多少時間呢?
根據《摩訶僧祗律》記載
一剎那者為一念,二十念為一瞬,二十瞬為一彈指,二十彈指為一羅預,二十羅預為一須臾,一日一夜有三十須臾。
那么,經過周密的計算,一瞬間為0.36 秒,一剎那有 0.018 秒.一彈指長達 7.2 秒。
(二)并發
如下圖所示,在大并發的情況下,所有的請求直接訪問數據庫,數據庫會出現連接異常。這個時候,就需要使用redis做一個緩沖操作,讓請求先訪問到redis,而不是直接訪問數據庫。
2、使用redis有什么缺點
分析:大家用redis這么久,這個問題是必須要了解的,基本上使用redis都會碰到一些問題,常見的也就幾個。
回答:主要是四個問題
(一)緩存和數據庫雙寫一致性問題
(二)緩存雪崩問題
(三)緩存擊穿問題
(四)緩存的并發競爭問題
這四個問題,我個人是覺得在項目中,比較常遇見的,具體解決方案,后文給出。
3、單線程的redis為什么這么快
分析:這個問題其實是對redis內部機制的一個考察。其實根據博主的面試經驗,很多人其實都不知道redis是單線程工作模型。所以,這個問題還是應該要復習一下的。
回答:主要是以下三點
(一)純內存操作
(二)單線程操作,避免了頻繁的上下文切換
(三)采用了非阻塞I/O多路復用機制
題外話:我們現在要仔細的說一說I/O多路復用機制,因為這個說法實在是太通俗了,通俗到一般人都不懂是什么意思。博主打一個比方:小曲在S城開了一家快遞店,負責同城快送服務。小曲因為資金限制,雇傭了一批快遞員,然后小曲發現資金不夠了,只夠買一輛車送快遞。
經營方式一
客戶每送來一份快遞,小曲就讓一個快遞員盯著,然后快遞員開車去送快遞。慢慢的小曲就發現了這種經營方式存在下述問題
- 幾十個快遞員基本上時間都花在了搶車上了,大部分快遞員都處在閑置狀態,誰搶到了車,誰就能去送快遞
- 隨著快遞的增多,快遞員也越來越多,小曲發現快遞店里越來越擠,沒辦法雇傭新的快遞員了
- 快遞員之間的協調很花時間
綜合上述缺點,小曲痛定思痛,提出了下面的經營方式
經營方式二
小曲只雇傭一個快遞員。然后呢,客戶送來的快遞,小曲按送達地點標注好,然后依次放在一個地方。最后,那個快遞員依次的去取快遞,一次拿一個,然后開著車去送快遞,送好了就回來拿下一個快遞。
對比
上述兩種經營方式對比,是不是明顯覺得第二種,效率更高,更好呢。在上述比喻中:
- 每個快遞員------------------>每個線程
- 每個快遞-------------------->每個socket(I/O流)
- 快遞的送達地點-------------->socket的不同狀態
- 客戶送快遞請求-------------->來自客戶端的請求
- 小曲的經營方式-------------->服務端運行的代碼
- 一輛車---------------------->CPU的核數
于是我們有如下結論
1、經營方式一就是傳統的并發模型,每個I/O流(快遞)都有一個新的線程(快遞員)管理。
2、經營方式二就是I/O多路復用。只有單個線程(一個快遞員),通過跟蹤每個I/O流的狀態(每個快遞的送達地點),來管理多個I/O流。
下面類比到真實的redis線程模型,如圖所示
參照上圖,簡單來說,就是。我們的redis-client在操作的時候,會產生具有不同事件類型的socket。在服務端,有一段I/0多路復用程序,將其置入隊列之中。然后,文件事件分派器,依次去隊列中取,轉發到不同的事件處理器中。
需要說明的是,這個I/O多路復用機制,redis還提供了select、epoll、evport、kqueue等多路復用函數庫,大家可以自行去了解。
4、redis的數據類型,以及每種數據類型的使用場景
分析:是不是覺得這個問題很基礎,其實我也這么覺得。然而根據面試經驗發現,至少百分八十的人答不上這個問題。建議,在項目中用到后,再類比記憶,體會更深,不要硬記。基本上,一個合格的程序員,五種類型都會用到。
回答:一共五種
(一)String
這個其實沒啥好說的,最常規的set/get操作,value可以是String也可以是數字。一般做一些復雜的計數功能的緩存。
(二)hash
這里value存放的是結構化的對象,比較方便的就是操作其中的某個字段。博主在做單點登錄的時候,就是用這種數據結構存儲用戶信息,以cookieId作為key,設置30分鐘為緩存過期時間,能很好的模擬出類似session的效果。
(三)list
使用List的數據結構,可以做簡單的消息隊列的功能。另外還有一個就是,可以利用lrange命令,做基于redis的分頁功能,性能極佳,用戶體驗好。
(四)set
因為set堆放的是一堆不重復值的集合。所以可以做全局去重的功能。為什么不用JVM自帶的Set進行去重?因為我們的系統一般都是集群部署,使用JVM自帶的Set,比較麻煩,難道為了一個做一個全局去重,再起一個公共服務,太麻煩了。
另外,就是利用交集、并集、差集等操作,可以計算共同喜好,全部的喜好,自己獨有的喜好等功能。
(五)sorted set
sorted set多了一個權重參數score,集合中的元素能夠按score進行排列。可以做排行榜應用,取TOP N操作。另外,參照另一篇《分布式之延時任務方案解析》,該文指出了sorted set可以用來做延時任務。最后一個應用就是可以做范圍查找。
5、redis的過期策略以及內存淘汰機制
分析:這個問題其實相當重要,到底redis有沒用到家,這個問題就可以看出來。比如你redis只能存5G數據,可是你寫了10G,那會刪5G的數據。怎么刪的,這個問題思考過么?還有,你的數據已經設置了過期時間,但是時間到了,內存占用率還是比較高,有思考過原因么?
回答:
redis采用的是定期刪除+惰性刪除策略。
為什么不用定時刪除策略?
定時刪除,用一個定時器來負責監視key,過期則自動刪除。雖然內存及時釋放,但是十分消耗CPU資源。在大并發請求下,CPU要將時間應用在處理請求,而不是刪除key,因此沒有采用這一策略.
定期刪除+惰性刪除是如何工作的呢?
定期刪除,redis默認每個100ms檢查,是否有過期的key,有過期key則刪除。需要說明的是,redis不是每個100ms將所有的key檢查一次,而是隨機抽取進行檢查(如果每隔100ms,全部key進行檢查,redis豈不是卡死)。因此,如果只采用定期刪除策略,會導致很多key到時間沒有刪除。
于是,惰性刪除派上用場。也就是說在你獲取某個key的時候,redis會檢查一下,這個key如果設置了過期時間那么是否過期了?如果過期了此時就會刪除。
采用定期刪除+惰性刪除就沒其他問題了么?
不是的,如果定期刪除沒刪除key。然后你也沒即時去請求key,也就是說惰性刪除也沒生效。這樣,redis的內存會越來越高。那么就應該采用內存淘汰機制。
在redis.conf中有一行配置
# maxmemory-policy volatile-lru
該配置就是配內存淘汰策略的(什么,你沒配過?好好反省一下自己)
1)noeviction:當內存不足以容納新寫入數據時,新寫入操作會報錯。應該沒人用吧。
2)allkeys-lru:當內存不足以容納新寫入數據時,在鍵空間中,移除最近最少使用的key。推薦使用,目前項目在用這種。
3)allkeys-random:當內存不足以容納新寫入數據時,在鍵空間中,隨機移除某個key。應該也沒人用吧,你不刪最少使用Key,去隨機刪。
4)volatile-lru:當內存不足以容納新寫入數據時,在設置了過期時間的鍵空間中,移除最近最少使用的key。這種情況一般是把redis既當緩存,又做持久化存儲的時候才用。不推薦
5)volatile-random:當內存不足以容納新寫入數據時,在設置了過期時間的鍵空間中,隨機移除某個key。依然不推薦
6)volatile-ttl:當內存不足以容納新寫入數據時,在設置了過期時間的鍵空間中,有更早過期時間的key優先移除。不推薦
ps:如果沒有設置 expire 的key, 不滿足先決條件(prerequisites); 那么 volatile-lru, volatile-random 和 volatile-ttl 策略的行為, 和 noeviction(不刪除) 基本上一致。
6、redis和數據庫雙寫一致性問題
分析:一致性問題是分布式常見問題,還可以再分為最終一致性和強一致性。數據庫和緩存雙寫,就必然會存在不一致的問題。答這個問題,先明白一個前提。就是如果對數據有強一致性要求,不能放緩存。我們所做的一切,只能保證最終一致性。另外,我們所做的方案其實從根本上來說,只能說降低不一致發生的概率,無法完全避免。因此,有強一致性要求的數據,不能放緩存。
回答:
先做一個說明,從理論上來說,給緩存設置過期時間,是保證最終一致性的解決方案。這種方案下,我們可以對存入緩存的數據設置過期時間,所有的寫操作以數據庫為準,對緩存操作只是盡最大努力即可。也就是說如果數據庫寫成功,緩存更新失敗,那么只要到達過期時間,則后面的讀請求自然會從數據庫中讀取新值然后回填緩存。因此,接下來討論的思路不依賴于給緩存設置過期時間這個方案。
在這里,我們討論三種更新策略:
- 先更新數據庫,再更新緩存
- 先刪除緩存,再更新數據庫
- 先更新數據庫,再刪除緩存
應該沒人問我,為什么沒有先更新緩存,再更新數據庫這種策略。
(1)先更新數據庫,再更新緩存
這套方案,大家是普遍反對的。為什么呢?有如下兩點原因。
原因一(線程安全角度)
同時有請求A和請求B進行更新操作,那么會出現
(1)線程A更新了數據庫
(2)線程B更新了數據庫
(3)線程B更新了緩存
(4)線程A更新了緩存
這就出現請求A更新緩存應該比請求B更新緩存早才對,但是因為網絡等原因,B卻比A更早更新了緩存。這就導致了臟數據,因此不考慮。
原因二(業務場景角度)
有如下兩點:
(1)如果你是一個寫數據庫場景比較多,而讀數據場景比較少的業務需求,采用這種方案就會導致,數據壓根還沒讀到,緩存就被頻繁的更新,浪費性能。
(2)如果你寫入數據庫的值,并不是直接寫入緩存的,而是要經過一系列復雜的計算再寫入緩存。那么,每次寫入數據庫后,都再次計算寫入緩存的值,無疑是浪費性能的。顯然,刪除緩存更為適合。
接下來討論的就是爭議最大的,先刪緩存,再更新數據庫。還是先更新數據庫,再刪緩存的問題。
(2)先刪緩存,再更新數據庫
該方案會導致不一致的原因是。同時有一個請求A進行更新操作,另一個請求B進行查詢操作。那么會出現如下情形:
(1)請求A進行寫操作,刪除緩存
(2)請求B查詢發現緩存不存在
(3)請求B去數據庫查詢得到舊值
(4)請求B將舊值寫入緩存
(5)請求A將新值寫入數據庫
上述情況就會導致不一致的情形出現。而且,如果不采用給緩存設置過期時間策略,該數據永遠都是臟數據。
那么,如何解決呢?采用延時雙刪策略
偽代碼如下
- <span style="color:#333333"><code><span style="color:#0000ff">public</span> <span style="color:#0000ff">void</span> <span style="color:#a31515">write</span>(String key,Object data){
- redis.delKey(key);
- db.updateData(data);
- Thread.sleep(1000);
- redis.delKey(key);
- }</code></span>
轉化為中文描述就是
(1)先淘汰緩存
(2)再寫數據庫(這兩步和原來一樣)
(3)休眠1秒,再次淘汰緩存
這么做,可以將1秒內所造成的緩存臟數據,再次刪除。
那么,這個1秒怎么確定的,具體該休眠多久呢?
針對上面的情形,讀者應該自行評估自己的項目的讀數據業務邏輯的耗時。然后寫數據的休眠時間則在讀數據業務邏輯的耗時基礎上,加幾百ms即可。這么做的目的,就是確保讀請求結束,寫請求可以刪除讀請求造成的緩存臟數據。
如果你用了mysql的讀寫分離架構怎么辦?
ok,在這種情況下,造成數據不一致的原因如下,還是兩個請求,一個請求A進行更新操作,另一個請求B進行查詢操作。
(1)請求A進行寫操作,刪除緩存
(2)請求A將數據寫入數據庫了,
(3)請求B查詢緩存發現,緩存沒有值
(4)請求B去從庫查詢,這時,還沒有完成主從同步,因此查詢到的是舊值
(5)請求B將舊值寫入緩存
(6)數據庫完成主從同步,從庫變為新值
上述情形,就是數據不一致的原因。還是使用雙刪延時策略。只是,睡眠時間修改為在主從同步的延時時間基礎上,加幾百ms。
采用這種同步淘汰策略,吞吐量降低怎么辦?
ok,那就將第二次刪除作為異步的。自己起一個線程,異步刪除。這樣,寫的請求就不用沉睡一段時間后了,再返回。這么做,加大吞吐量。
第二次刪除,如果刪除失敗怎么辦?
這是個非常好的問題,因為第二次刪除失敗,就會出現如下情形。還是有兩個請求,一個請求A進行更新操作,另一個請求B進行查詢操作,為了方便,假設是單庫:
(1)請求A進行寫操作,刪除緩存
(2)請求B查詢發現緩存不存在
(3)請求B去數據庫查詢得到舊值
(4)請求B將舊值寫入緩存
(5)請求A將新值寫入數據庫
(6)請求A試圖去刪除請求B寫入對緩存值,結果失敗了。
ok,這也就是說。如果第二次刪除緩存失敗,會再次出現緩存和數據庫不一致的問題。
如何解決呢?
具體解決方案,且看博主對第(3)種更新策略的解析。
(3)先更新數據庫,再刪緩存
首先,先說一下。老外提出了一個緩存更新套路,名為《Cache-Aside pattern》。其中就指出
- 失效:應用程序先從cache取數據,沒有得到,則從數據庫中取數據,成功后,放到緩存中。
- 命中:應用程序從cache中取數據,取到后返回。
- 更新:先把數據存到數據庫中,成功后,再讓緩存失效。
另外,知名社交網站facebook也在論文《Scaling Memcache at Facebook》中提出,他們用的也是先更新數據庫,再刪緩存的策略。
這種情況不存在并發問題么?
不是的。假設這會有兩個請求,一個請求A做查詢操作,一個請求B做更新操作,那么會有如下情形產生
(1)緩存剛好失效
(2)請求A查詢數據庫,得一個舊值
(3)請求B將新值寫入數據庫
(4)請求B刪除緩存
(5)請求A將查到的舊值寫入緩存
ok,如果發生上述情況,確實是會發生臟數據。
然而,發生這種情況的概率又有多少呢?
發生上述情況有一個先天性條件,就是步驟(3)的寫數據庫操作比步驟(2)的讀數據庫操作耗時更短,才有可能使得步驟(4)先于步驟(5)。可是,大家想想,數據庫的讀操作的速度遠快于寫操作的(不然做讀寫分離干嘛,做讀寫分離的意義就是因為讀操作比較快,耗資源少),因此步驟(3)耗時比步驟(2)更短,這一情形很難出現。
假設,有人非要抬杠,有強迫癥,一定要解決怎么辦?
如何解決上述并發問題?
首先,給緩存設有效時間是一種方案。其次,采用策略(2)里給出的異步延時刪除策略,保證讀請求完成以后,再進行刪除操作。
還有其他造成不一致的原因么?
有的,這也是緩存更新策略(2)和緩存更新策略(3)都存在的一個問題,如果刪緩存失敗了怎么辦,那不是會有不一致的情況出現么。比如一個寫數據請求,然后寫入數據庫了,刪緩存失敗了,這會就出現不一致的情況了。這也是緩存更新策略(2)里留下的最后一個疑問。
如何解決?
提供一個保障的重試機制即可,這里給出兩套方案。
方案一:
如下圖所示
流程如下所示
(1)更新數據庫數據;
(2)緩存因為種種問題刪除失敗
(3)將需要刪除的key發送至消息隊列
(4)自己消費消息,獲得需要刪除的key
(5)繼續重試刪除操作,直到成功
然而,該方案有一個缺點,對業務線代碼造成大量的侵入。于是有了方案二,在方案二中,啟動一個訂閱程序去訂閱數據庫的binlog,獲得需要操作的數據。在應用程序中,另起一段程序,獲得這個訂閱程序傳來的信息,進行刪除緩存操作。
方案二:
流程如下圖所示:
(1)更新數據庫數據
(2)數據庫會將操作信息寫入binlog日志當中
(3)訂閱程序提取出所需要的數據以及key
(4)另起一段非業務代碼,獲得該信息
(5)嘗試刪除緩存操作,發現刪除失敗
(6)將這些信息發送至消息隊列
(7)重新從消息隊列中獲得該數據,重試操作。
備注說明:上述的訂閱binlog程序在mysql中有現成的中間件叫canal,可以完成訂閱binlog日志的功能。至于oracle中,博主目前不知道有沒有現成中間件可以使用。另外,重試機制,博主是采用的是消息隊列的方式。如果對一致性要求不是很高,直接在程序中另起一個線程,每隔一段時間去重試即可,這些大家可以靈活自由發揮,只是提供一個思路。
總結
本文其實是對目前互聯網中已有的一致性方案,進行了一個總結。對于先刪緩存,再更新數據庫的更新策略,還有方案提出維護一個內存隊列的方式,博主看了一下,覺得實現異常復雜,沒有必要,因此沒有必要在文中給出。最后,希望大家有所收獲。
7、如何應對緩存穿透和緩存雪崩問題
分析:這兩個問題,說句實在話,一般中小型傳統軟件企業,很難碰到這個問題。如果有大并發的項目,流量有幾百萬左右。這兩個問題一定要深刻考慮。
回答:如下所示
緩存穿透,即黑客故意去請求緩存中不存在的數據,導致所有的請求都懟到數據庫上,從而數據庫連接異常。
解決方案:
(一)利用互斥鎖,緩存失效的時候,先去獲得鎖,得到鎖了,再去請求數據庫。沒得到鎖,則休眠一段時間重試
(二)采用異步更新策略,無論key是否取到值,都直接返回。value值中維護一個緩存失效時間,緩存如果過期,異步起一個線程去讀數據庫,更新緩存。需要做緩存預熱(項目啟動前,先加載緩存)操作。
(三)提供一個能迅速判斷請求是否有效的攔截機制,比如,利用布隆過濾器,內部維護一系列合法有效的key。迅速判斷出,請求所攜帶的Key是否合法有效。如果不合法,則直接返回。
緩存雪崩,即緩存同一時間大面積的失效,這個時候又來了一波請求,結果請求都懟到數據庫上,從而導致數據庫連接異常。
解決方案:
(一)給緩存的失效時間,加上一個隨機值,避免集體失效。
(二)使用互斥鎖,但是該方案吞吐量明顯下降了。
(三)雙緩存。我們有兩個緩存,緩存A和緩存B。緩存A的失效時間為20分鐘,緩存B不設失效時間。自己做緩存預熱操作。然后細分以下幾個小點
- I 從緩存A讀數據庫,有則直接返回
- II A沒有數據,直接從B讀數據,直接返回,并且異步啟動一個更新線程。
- III 更新線程同時更新緩存A和緩存B。
8、如何解決redis的并發競爭key問題
分析:這個問題大致就是,同時有多個子系統去set一個key。這個時候要注意什么呢?大家思考過么。需要說明一下,博主提前百度了一下,發現答案基本都是推薦用redis事務機制。博主不推薦使用redis的事務機制。因為我們的生產環境,基本都是redis集群環境,做了數據分片操作。你一個事務中有涉及到多個key操作的時候,這多個key不一定都存儲在同一個redis-server上。因此,redis的事務機制,十分雞肋。
回答:如下所示
(1)如果對這個key操作,不要求順序
這種情況下,準備一個分布式鎖,大家去搶鎖,搶到鎖就做set操作即可,比較簡單。
(2)如果對這個key操作,要求順序
假設有一個key1,系統A需要將key1設置為valueA,系統B需要將key1設置為valueB,系統C需要將key1設置為valueC.
期望按照key1的value值按照 valueA-->valueB-->valueC的順序變化。這種時候我們在數據寫入數據庫的時候,需要保存一個時間戳。假設時間戳如下
- 系統A key 1 {valueA 3:00}
- 系統B key 1 {valueB 3:05}
- 系統C key 1 {valueC 3:10}
那么,假設這會系統B先搶到鎖,將key1設置為{valueB 3:05}。接下來系統A搶到鎖,發現自己的valueA的時間戳早于緩存中的時間戳,那就不做set操作了。以此類推。
其他方法,比如利用隊列,將set方法變成串行訪問也可以。總之,靈活變通。
總結
本文對redis的常見問題做了一個總結。大部分是博主自己在工作中遇到,以及以前面試別人的時候,愛問的一些問題。另外,不推薦大家臨時抱佛腳,真正碰到一些有經驗的工程師,其實幾下就能把你問懵。最后,希望大家有所收獲吧。
總結
以上是生活随笔為你收集整理的大数据之路Week10_day05 (Redis总结I)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: C#弃元表达式的用法
- 下一篇: 关于几种排序算法的时间性能比较