日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

负样本修正:CVR预估时间延迟问题

發布時間:2025/3/8 编程问答 19 豆豆
生活随笔 收集整理的這篇文章主要介紹了 负样本修正:CVR预估时间延迟问题 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

你的標簽錯了,而且錯了很多!

一元@煉丹筆記

在推薦搜索的建模中,我們經常會使用D+1天的數據作為label,從1~D天的數據中的進行特征抽取等工作,和我們時間序列問題建模類似,但和很多其他的時間序列問題建模不一樣的地方在于,我們的label不一定可靠,比如在傳統的時間序列回歸中,D+1天的銷量是多少就是多少,我們沒有太多的猶豫,因為不大會有其他的情況。但是在電商的問題中,就存在下面這種情況:

D+1天未購買可能并不一定是真正意義上的未購買,而可能是加入購物車或者意愿清單了, 只是沒有在當天下單, 而是過了一天在D+2天的時候下了單, 而這樣的標簽如果我們直接默認其為負樣本就會有較大的問題,因為它并不是真正意義上的負樣本,只是反饋延遲了。

這在搜索推薦系統中,我們稱之為延遲反饋的問題。

那么這個問題嚴重嗎?如果只有1%不到的數據在第二天甚至之后出現了延遲,那么或許并不是一個問題,但實際呢?在Criteo公司早期,

  • 有35%的商品會在點擊后一個小時內得到轉化;
  • 有50%的商品會在點擊后24h內得到轉化;
  • 有13%的商品會在點擊后2周之后才得到轉化。

那么如何解決該問題呢?

對時間延遲建模

這個問題較早在2014文章Modelling Delayed Feedback in Display Advertising中被提出,該文十分經典,同時提出的問題十分具有實踐價值,但是已經過去了6年, 本文我們就研討最新的IJCAI20關于CVR預估標簽延遲的paper.《An Attention-based Model for CVR with Delayed Feedback via Post-Click Calibration》。

最新延遲反饋論文解讀

問題背景

在早期對于標簽反饋延遲的建模都是建立在LR等傳統模型上,會存在模型表示能力欠缺以及需要大量人工專家特征的問題,本文將傳統的模型替換為現在火熱的深度學習模型,從而大大提高模型的表示能力。

但是在深度模型用于推薦問題時,又會出現大量類別特征EMbedding的稀疏性問題,這在CTR建模的時候是很容易得到解決的,因為CTR數據集是非常大的,模型往往可以學習到不錯的Embedding信息,但是CVR的數據集是相對較小的。

所以如何解決數據稀疏性的問題是一個非常大的挑戰;

此外,早期的文章都假設,也就是說,用戶在點擊商品之后到現在的時間是不影響我們商品的最終轉化以及轉化時間,這其實是不對的。

很明顯地,用戶在點擊完某個商品之后對于其他商品的點擊會影響最終是否會購買該商品?

以及最終購買該商品的時間(本文做了一定泛化,依然假設點擊item之后到目前的時間不會影響最終商品是否會轉化,但是會影響商品最終轉化的時間)。

所以本篇文章就是Focus在解決數據稀疏性以及標簽延遲反饋的問題上提出了一種新的解決方案。

下面我們看看本文是如何來解決這兩大挑戰的。數據稀疏性問題&時間延遲建模

模型部分

數據稀疏性問題

為了處理因為數據樣本量稀少而帶來的大量ID特征學習不充分的問題,本文使用預訓練好的Telepath從Item的圖像中學習得到結果替換稀疏的ID特征,以此來緩解該問題。從文章最后的實驗中我們也發現,數據稀疏性帶來的影響是巨大的,具體地可以參見實驗部分。

轉化模型&時間延遲模型

在稀疏ID的Embedding處理完成之后,接下來我們看一下我們的模型框架,

本文的模型框架主要分為左右兩個模塊,左側的轉化模型以及右側的時間延遲模型。

1.左側轉化模型:

我們可以用自己設計的網絡結構來構建自己的轉化模型. 本文的轉化模型的構建主要有三個模塊,我們由后往前看,

2.時間延遲模型

2.1 關系梳理

和《Modeling Delayed Feedback in Display Advertising》論文中類似,我們還需要得到

我們將轉換的延遲時間全部轉化為天的粒度, 在Survival Analysis中我們知道, 只要得到其中任意一個的表示,就可以得到其他的表示,也就是說我們對f(t)或者s(t)進行假設之后,就可以推導得到f(t),h(t)以及s(t)三者的表示.

2.2 網絡表示

那么接下來我們只需要看一下該概率是如何通過網絡層進行表示的,具體可以參考文章給出的右側的網絡大致框架進行解讀。和之前的一樣,我們由后往前看,

實驗結果

1.整體性能比較:

我們看一下本文的實驗結果,

從上面的實驗中,我們發現:

    • Item的Embedding初始化對效果的影響是巨大的;
    • Time Delay模塊的影響僅次于Item的Embedding初始化;
    • SelfAttention的影響是WP1和JD-MP數據集上的影響是相對較小的。

2.Time Delay分析:

我們從Figure2中可以看到,我們的在訓練集和測試集上的時間延遲分布是類似的,此處我們用Jensen-Shannon divergence來刻畫不同模型對于time delay的預測,而從結果上看,本文的算法對于時間延遲的預測也是最好的。

一本有仙氣的筆記,記錄了AI里的不凡

與50位技術專家面對面20年技術見證,附贈技術全景圖

總結

以上是生活随笔為你收集整理的负样本修正:CVR预估时间延迟问题的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 自由成熟xxxx色视频 | 欧美激情一级精品国产 | 亚洲无码精品一区二区三区 | 欧美中文字幕一区二区 | 日韩高清专区 | 草草影院在线播放 | www.成人免费视频 | 狠狠狠狠狠狠狠 | 人人妻人人澡人人爽人人欧美一区 | 五月婷婷在线观看 | 在线看片网站 | 国产精品一区二区三区线羞羞网站 | 99ri在线观看 | 亚洲精品成人无码熟妇在线 | 伊人97| 国产鲁鲁视频在线观看免费 | 亚洲13p | 亚洲国产日韩欧美 | 公肉吊粗大爽色翁浪妇视频 | 午夜精品久久久久久久91蜜桃 | 日本jizz在线观看 | 华丽的外出在线观看 | 北条麻妃在线一区二区 | 亚洲成熟少妇视频在线观看 | 日韩av网站在线播放 | 91视频黄版 | 亚洲香蕉在线 | 亚洲视频黄 | 91午夜交换视频 | 美女伦理水蜜桃4 | a国产在线| 轻轻草在线视频 | 久久精品久久99 | 中文视频一区 | 毛片网页| 国产伦精品一区三区精东 | 无码精品国产一区二区三区 | 日本不卡视频一区二区三区 | 18禁超污无遮挡无码免费游戏 | 巨乳xxx| 色吧在线观看 | 日本精品黄色 | 亚洲大胆人体 | 四虎一国产精品一区二区影院 | 天天婷婷 | 国产性―交―乱―色―情人 | 久久网址| 欧美日韩一区二区在线播放 | 精品人妻av一区二区三区 | 午夜视频在线免费观看 | 国产男男gay体育生白袜 | 欧美一区二区免费在线观看 | 一级全黄毛片 | 蜜臀av性久久久久av蜜臀妖精 | 一本一道久久a久久精品蜜桃 | 久草观看视频 | 丰满少妇xoxoxo视频 | 2023毛片 | 久热国产精品 | 国产伦精品一区二区三区四区 | 日韩亚洲精品中文字幕 | 色女人av| 亚洲依依 | 国产精品成人99一区无码 | 日韩欧美国产亚洲 | 久久久久久久久久久久久女过产乱 | 久久99热这里只频精品6学生 | 日韩免费播放 | 成人深夜视频在线观看 | 欧美97| 麻豆影音先锋 | 国产精品野外户外 | 四虎影视永久免费 | 日韩精品中文字 | 欧美激情h | 91口爆一区二区三区在线 | 91香蕉国产 | 蜜臀久久精品久久久久久酒店 | 精品动漫一区二区三区在线观看 | 国产欧美一区二区三区在线 | 国产 xxxx| 日韩精品一区二区三区国语自制 | 人成网站在线观看 | 天天干天天透 | 日本高清不卡视频 | 欧美一区二区三区久久成人精品 | 国产精品秘 | 国产精品久久婷婷 | 在线视频1卡二卡三卡 | 色桃网| 97视频在线观看免费 | 古代玷污糟蹋np高辣h文 | 亚洲福利一区 | 人妻精品一区二区在线 | 久久久久久久亚洲av无码 | 男女午夜网站 | 亚洲欧美高清在线 | 日韩福利在线观看 | 波多野结衣啪啪 |