日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 运维知识 > windows >内容正文

windows

WWW2020推荐系统论文合集(已分类整理,并提供下载)

發布時間:2025/3/8 windows 28 豆豆
生活随笔 收集整理的這篇文章主要介紹了 WWW2020推荐系统论文合集(已分类整理,并提供下载) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

文章來源于機器學習與推薦算法,作者張小磊

?1???摘要

國際頂級學術會議WWW2020定在2020年4月20-24日于中國臺灣舉辦。受COVID-19疫情影響(疫情趕緊過去吧),大會將在線上舉行。今天是大會開始的第一天。

本次會議共收到了1129篇論文投稿,錄用217篇,錄取率僅為19.2%。其中關于推薦系統的論文大約38篇,推薦系統占比17.5%,可見推薦系統的研究受到學術界的廣泛關注。另外,值得注意的是,接收的推薦系統論文中大部分都是與工業界合作的產物,因此不管是學術界還是工業界,推薦系統都是研究的熱點與重點。

針對這38篇論文,我們進行了梳理分類,如下表所示

分類數量
Practical RS6
Sequential RS6
Efficient RS?
4
Social RS3
General RS
3
RL for RS
3
POI RS
2
Cold Start?in RS
2
Security RS
2
Fairness RS
2
Explianability for?RS
2
Cross-domain RS
1
Knowledge Graph?RS
1
Conversational RS1
CTR for RS
1

可見,推薦系統應用的文章以及序列化推薦的文章占比較大;隨后是提升推薦效率、社會化推薦、常規推薦以及利用強化學習推薦;其次是興趣點推薦、冷啟動問題研究、推薦系統中的安全性、推薦公平性以及可解釋推薦的文章;最后是各有一篇跨域推薦、利用知識圖推薦、對話推薦系統以及用于點擊率預估的推薦。

?2?? 論文列表

1

Practical RS

  • Graph Enhanced Representation Learning for News Recommendation

  • Weakly Supervised Attention for Hashtag Recommendation using Graph Data

  • Personalized Employee Training Course Recommendation with Career Development Awareness

  • Understanding User Behavior For Document Recommendation

  • Recommending Themes for Ad Creative Design via Visual-Linguistic Representations

  • paper2repo: GitHub Repository Recommendation for Academic Papers

2

Sequential RS

  • Adaptive Hierarchical Translation-based Sequential Recommendation

  • Attentive Sequential Model of Latent Intent for Next Item Recommendation

  • Déjà vu: A Contextualized Temporal Attention Mechanism for Sequential Recommendation

  • Intention Modeling from Ordered and Unordered Facets for Sequential Recommendation

  • Future Data Helps Training: Modeling Future Contexts for Session-based Recommendation

  • Keywords Generation Improves E-Commerce Session-based Recommendation

3

Efficient RS

  • Learning to Hash with Graph Neural Networks for Recommender Systems

  • LightRec: a Memory and Search-Efficient Recommender System

  • A Generalized and Fast-converging Non-negative Latent Factor Model for Predicting User Preferences in Recommender Systems

  • Efficient Non-Sampling Factorization Machines for Optimal Context-Aware Recommendation

4

Social RS

  • Clustering and Constructing User Coresets to Accelerate Large-scale Top-K Recommender Systems

  • The Structure of Social Influence in Recommender Networks

  • Few-Shot Learning for New User Recommendation in Location-based Social Networks

5

Explainability for RS

  • Directional and Explainable Serendipity Recommendation

  • Dual Learning for Explainable Recommendation: Towards Unifying User Preference Prediction and Review Generation

6

POI RS

  • Next Point-of-Interest Recommendation on Resource-Constrained Mobile Devices

  • A Category-Aware Deep Model for Successive POI Recommendation on Sparse Check-in Data

7

General RS

  • Efficient Neural Interaction Function Search for Collaborative Filtering

  • Learning the Structure of Auto-Encoding Recommenders

  • Deep Global and Local Generative Model for Recommendation

8

Fairness in?RS

  • Hierarchical Visual-aware Minimax Ranking Based on Co-purchase Data for Personalized Recommendation

  • FairRec: Two-Sided Fairness for Personalized Recommendations in Two-Sided Platforms

9

RL for RS

  • Off-policy Learning in Two-stage Recommender Systems

  • Hierarchical Adaptive Contextual Bandits for Resource Constraint based Recommendation

10

Cross-domain RS

  • Exploiting Aesthetic Preference in Deep Cross Networks for Cross-domain Recommendation

11

Knowledge Graph RS

  • Reinforced Negative Sampling over Knowledge Graph for Recommendation

12

Conversational RS

  • Latent Linear Critiquing for Conversational Recommender Systems

13

CTR for RS

  • Adversarial Multimodal Representation Learning for Click-Through Rate Prediction

?3???官方Tutorial

最后,WWW2020還進行了兩場關于推薦與搜索的Tutorial,分別是利用深度遷移學習的搜索與推薦和可信任的推薦與搜索系統,感興趣的小伙伴可以學習一下。


獲取以上WWW2020推薦系統論文,請關注機器學習與推薦算法公眾號后臺回復【0420】即可。

往期精彩回顧適合初學者入門人工智能的路線及資料下載機器學習在線手冊深度學習在線手冊AI基礎下載(pdf更新到25集)本站qq群1003271085,加入微信群請回復“加群”獲取一折本站知識星球優惠券,復制鏈接直接打開:https://t.zsxq.com/yFQV7am喜歡文章,點個在看

總結

以上是生活随笔為你收集整理的WWW2020推荐系统论文合集(已分类整理,并提供下载)的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。