日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程语言 > python >内容正文

python

【Python基础】高效的10个Pandas函数,你都用过吗?

發(fā)布時間:2025/3/8 python 16 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【Python基础】高效的10个Pandas函数,你都用过吗? 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

文章來源于Python大數(shù)據(jù)分析,作者朱衛(wèi)軍

文章來源:towardsdatascience
作者:Soner Y?ld?r?m
翻譯\編輯:Python大數(shù)據(jù)分析

?

Pandas是python中最主要的數(shù)據(jù)分析庫之一,它提供了非常多的函數(shù)、方法,可以高效地處理并分析數(shù)據(jù)。讓pandas如此受歡迎的原因是它簡潔、靈活、功能強大的語法。

這篇文章將會配合實例,講解10個重要的pandas函數(shù)。其中有一些很常用,相信你可能用到過。還有一些函數(shù)出現(xiàn)的頻率沒那么高,但它們同樣是分析數(shù)據(jù)的得力幫手。

介紹這些函數(shù)之前,第一步先要導(dǎo)入pandas和numpy。

import?numpy?as?np import?pandas?as?pd

1. Query

Query是pandas的過濾查詢函數(shù),使用布爾表達式來查詢DataFrame的列,就是說按照列的規(guī)則進行過濾操作。

用法:

pandas.DataFrame.query(self,?expr,?inplace?=?False,?**kwargs)

參數(shù)作用:

  • expr:要評估的查詢字符串;

  • inplace=False:查詢是應(yīng)該修改數(shù)據(jù)還是返回修改后的副本

  • kwargs:dict關(guān)鍵字參數(shù)

首先生成一段df:

values_1?=?np.random.randint(10,?size=10) values_2?=?np.random.randint(10,?size=10) years?=?np.arange(2010,2020) groups?=?['A','A','B','A','B','B','C','A','C','C'] df?=?pd.DataFrame({'group':groups,?'year':years,?'value_1':values_1,?'value_2':values_2}) df

過濾查詢用起來比較簡單,比如要查列value_1<value_2的行記錄:

df.query('value_1?<?value_2')

查詢列year>=2016的行記錄:

df.query('year?>=?2016?')

2. Insert

Insert用于在DataFrame的指定位置中插入新的數(shù)據(jù)列。默認情況下新列是添加到末尾的,但可以更改位置參數(shù),將新列添加到任何位置。

用法:

Dataframe.insert(loc,?column,?value,?allow_duplicates=False)

參數(shù)作用:

  • loc: ?int型,表示插入位置在第幾列;若在第一列插入數(shù)據(jù),則 loc=0

  • column: 給插入的列取名,如 column='新的一列'

  • value:新列的值,數(shù)字、array、series等都可以

  • allow_duplicates: 是否允許列名重復(fù),選擇Ture表示允許新的列名與已存在的列名重復(fù)

接著用前面的df:

在第三列的位置插入新列:

#新列的值 new_col?=?np.random.randn(10) #在第三列位置插入新列,從0開始計算 df.insert(2,?'new_col',?new_col) df

3. Cumsum

Cumsum是pandas的累加函數(shù),用來求列的累加值。用法:

DataFrame.cumsum(axis=None,?skipna=True,?args,?kwargs)

參數(shù)作用:

  • axis:index或者軸的名字

  • skipna:排除NA/null值

以前面的df為例,group列有A、B、C三組,year列有多個年份。我們只知道當年度的值value_1、value_2,現(xiàn)在求group分組下的累計值,比如A、2014之前的累計值,可以用cumsum函數(shù)來實現(xiàn)。

當然僅用cumsum函數(shù)沒辦法對groups (A, B, C)進行區(qū)分,所以需要結(jié)合分組函數(shù)groupby分別對(A, B, C)進行值的累加。

df['cumsum_2']?=?df[['value_2','group']].groupby('group').cumsum() df

4. Sample

Sample用于從DataFrame中隨機選取若干個行或列。用法:

DataFrame.sample(n=None,?frac=None,?replace=False,?weights=None,?random_state=None,?axis=None)

參數(shù)作用:

  • n:要抽取的行數(shù)

  • frac:抽取行的比例 例如frac=0.8,就是抽取其中80%

  • replace:是否為有放回抽樣, True:有放回抽樣 False:未放回抽樣

  • weights:字符索引或概率數(shù)組

  • random_state :隨機數(shù)發(fā)生器種子

  • axis:選擇抽取數(shù)據(jù)的行還是列 axis=0:抽取行 axis=1:抽取列

比如要從df中隨機抽取5行:

sample1?=?df.sample(n=5) sample1

從df隨機抽取60%的行,并且設(shè)置隨機數(shù)種子,每次能抽取到一樣的樣本:

sample2?=?df.sample(frac=0.6,random_state=2) sample2

5. Where

Where用來根據(jù)條件替換行或列中的值。如果滿足條件,保持原來的值,不滿足條件則替換為其他值。默認替換為NaN,也可以指定特殊值。

用法:

DataFrame.where(cond,?other=nan,?inplace=False,?axis=None,?level=None,?errors='raise',?try_cast=False,?raise_on_error=None)

參數(shù)作用:

  • cond:布爾條件,如果 cond 為真,保持原來的值,否則替換為other

  • other:替換的特殊值

  • inplace:inplace為真則在原數(shù)據(jù)上操作,為False則在原數(shù)據(jù)的copy上操作

  • axis:行或列

將df中列value_1里小于5的值替換為0:

df['value_1'].where(df['value_1']?>?5?,?0)

Where是一種掩碼操作。

「掩碼」(英語:Mask)在計算機學科及數(shù)字邏輯中指的是一串二進制數(shù)字,通過與目標數(shù)字的按位操作,達到屏蔽指定位而實現(xiàn)需求。

6. Isin

Isin也是一種過濾方法,用于查看某列中是否包含某個字符串,返回值為布爾Series,來表明每一行的情況。

用法:

Series.isin(values) 或者 DataFrame.isin(values)

篩選df中year列值在['2010','2014','2017']里的行:

years?=?['2010','2014','2017'] df[df.year.isin(years)]

7. Loc and iloc

Loc和iloc通常被用來選擇行和列,它們的功能相似,但用法是有區(qū)別的。

用法:

DataFrame.loc[] 或者 DataFrame.iloc[]
  • loc:按標簽(column和index)選擇行和列

  • iloc:按索引位置選擇行和列

選擇df第1~3行、第1~2列的數(shù)據(jù),使用iloc:

df.iloc[:3,:2]

使用loc:

df.loc[:2,['group','year']]1

提示:使用loc時,索引是指index值,包括上邊界。iloc索引是指行的位置,不包括上邊界。

選擇第1、3、5行,year和value_1列:

df.loc[[1,3,5],['year','value_1']]

8. Pct_change

Pct_change是一個統(tǒng)計函數(shù),用于表示當前元素與前面元素的相差百分比,兩元素的區(qū)間可以調(diào)整。

比如說給定三個元素[2,3,6],計算相差百分比后得到[NaN, 0.5, 1.0],從第一個元素到第二個元素增加50%,從第二個元素到第三個元素增加100%。

用法:

DataFrame.pct_change(periods=1,?fill_method=‘pad’,?limit=None,?freq=None,?**kwargs)

參數(shù)作用:

  • periods:間隔區(qū)間,即步長

  • fill_method:處理空值的方法

對df的value_1列進行增長率的計算:

df.value_1.pct_change()

9. Rank

Rank是一個排名函數(shù),按照規(guī)則(從大到小,從小到大)給原序列的值進行排名,返回的是排名后的名次。

比如有一個序列[1,7,5,3],使用rank從小到大排名后,返回[1,4,3,2],這就是前面那個序列每個值的排名位置。

用法:

rank(axis=0,?method:?str?=?'average',?numeric_only:?Union[bool,?NoneType]?=?None,?na_option:?str?=?'keep',?ascending:?bool?=?True,?pct:?bool?=?False)

參數(shù)作用:

  • axis:行或者列

  • method:返回名次的方式,可選{‘a(chǎn)verage’, ‘min’, ‘max’, ‘first’, ‘dense’}
    method=average 默認設(shè)置: 相同的值占據(jù)前兩名,分不出誰是1誰是2,那么去中值即1.5,下面一名為第三名
    method=max: 兩人并列第 2 名,下一個人是第 3 名
    method=min: 兩人并列第 1 名,下一個人是第 3 名
    method=dense: 兩人并列第1名,下一個人是第 2 名
    method=first: 相同值會按照其在序列中的相對位置定值

  • ascending:正序和倒序

對df中列value_1進行排名:

df['rank_1']?=?df['value_1'].rank() df

10. Melt

Melt用于將寬表變成窄表,是 pivot透視逆轉(zhuǎn)操作函數(shù),將列名轉(zhuǎn)換為列數(shù)據(jù)(columns name → column values),重構(gòu)DataFrame。

簡單說就是將指定的列放到鋪開放到行上變成兩列,類別是variable(可指定)列,值是value(可指定)列。

用法:

pandas.melt(frame,?id_vars=None,?value_vars=None,?var_name=None,?value_name='value',?col_level=None)

參數(shù)作用:

  • frame:它是指DataFrame

  • id_vars [元組, 列表或ndarray, 可選]:不需要被轉(zhuǎn)換的列名,引用用作標識符變量的列

  • value_vars [元組, 列表或ndarray, 可選]:引用要取消透視的列。如果未指定, 請使用未設(shè)置為id_vars的所有列

  • var_name [scalar]:指代用于”變量”列的名稱。如果為None, 則使用- - frame.columns.name或’variable’

  • value_name [標量, 默認為’value’]:是指用于” value”列的名稱

  • col_level [int或string, 可選]:如果列為MultiIndex, 它將使用此級別來融化

例如有一串數(shù)據(jù),表示不同城市和每天的人口流動:

import?pandas?as?pd df1?=?pd.DataFrame({'city':?{0:?'a',?1:?'b',?2:?'c'},'day1':?{0:?1,?1:?3,?2:?5},'day2':?{0:?2,?1:?4,?2:?6}}) df1

現(xiàn)在將day1、day2列變成變量列,再加一個值列:

pd.melt(df1,?id_vars=['city'])

往期精彩回顧適合初學者入門人工智能的路線及資料下載機器學習及深度學習筆記等資料打印機器學習在線手冊深度學習筆記專輯《統(tǒng)計學習方法》的代碼復(fù)現(xiàn)專輯 AI基礎(chǔ)下載機器學習的數(shù)學基礎(chǔ)專輯獲取一折本站知識星球優(yōu)惠券,復(fù)制鏈接直接打開:https://t.zsxq.com/662nyZF本站qq群1003271085。加入微信群請掃碼進群(如果是博士或者準備讀博士請說明):

總結(jié)

以上是生活随笔為你收集整理的【Python基础】高效的10个Pandas函数,你都用过吗?的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。