日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 >

【递推】Ayoub and Lost Array

發布時間:2025/3/8 21 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【递推】Ayoub and Lost Array 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

題目:Ayoub had an array aa of integers of size nn and this array had two interesting properties:

All the integers in the array were between ll and rr (inclusive).
The sum of all the elements was divisible by 33.
Unfortunately, Ayoub has lost his array, but he remembers the size of the array nn and the numbers ll and rr, so he asked you to find the number of ways to restore the array.

Since the answer could be very large, print it modulo 109+7109+7 (i.e. the remainder when dividing by 109+7109+7). In case there are no satisfying arrays (Ayoub has a wrong memory), print 00.

Input
The first and only line contains three integers nn, ll and rr (1≤n≤2?105,1≤l≤r≤1091≤n≤2?105,1≤l≤r≤109) — the size of the lost array and the range of numbers in the array.

Output
Print the remainder when dividing by 109+7109+7 the number of ways to restore the array.

Examples
inputCopy
2 1 3
outputCopy
3
inputCopy
3 2 2
outputCopy
1
inputCopy
9 9 99
outputCopy
711426616
Note
In the first example, the possible arrays are : [1,2],[2,1],[3,3][1,2],[2,1],[3,3].

In the second example, the only possible array is [2,2,2][2,2,2].

解決方法:首先可以先將[l,r]范圍內的整數根據其模3的到的余數分為三類,分別將其數量存在num[0],num[1],num[2]中,而dp[i] [j]代表在放置第i個數時使當前數組總和%3的值為j的情況數,由此可以推出
dp[i][j]=dp[i?1][0]?num[j]+dp[i?1][1]?num[(j?1+3)%3]+dp[i?1][2]?num[(j?2+3)%3]dp[i][j]=dp[i-1][0]*num[j]+dp[i-1][1]*num[(j-1+3)\%3]+dp[i-1][2]*num[(j-2+3)\%3] dp[i][j]=dp[i?1][0]?num[j]+dp[i?1][1]?num[(j?1+3)%3]+dp[i?1][2]?num[(j?2+3)%3]

#include <iostream> #include <cstdio> using namespace std; typedef long long ll; const int mod=1e9+7; ll dp[200050][3]; ll num[3]; int main() {ios::sync_with_stdio(0),cin.tie(0);int n,l,r;cin>>n>>l>>r;num[0]=r/3-(l-1)/3;num[1]=num[0]-1;if(l%3==1) num[1]++;if(r%3==1||r%3==2) num[1]++;num[2]=num[0]-1;if(l%3==1||l%3==2) num[2]++;if(r%3==2) num[2]++;//cout<<num[0]<<" "<<num[1]<<" "<<num[2]<<endl;dp[1][0]=num[0];dp[1][1]=num[1];dp[1][2]=num[2];for(int i=2;i<=n;i++) {dp[i][0]=((dp[i-1][0]*num[0])%mod+(dp[i-1][1]*num[2])%mod+(dp[i-1][2]*num[1])%mod)%mod;dp[i][1]=((dp[i-1][0]*num[1])%mod+(dp[i-1][1]*num[0])%mod+(dp[i-1][2]*num[2])%mod)%mod;dp[i][2]=((dp[i-1][0]*num[2])%mod+(dp[i-1][1]*num[1])%mod+(dp[i-1][2]*num[0])%mod)%mod;}cout<<dp[n][0]<<endl;return 0; }

總結

以上是生活随笔為你收集整理的【递推】Ayoub and Lost Array的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。