日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程语言 > python >内容正文

python

python风控工具_python-风控模型分析01

發(fā)布時間:2025/3/11 python 22 豆豆
生活随笔 收集整理的這篇文章主要介紹了 python风控工具_python-风控模型分析01 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

數(shù)據(jù)導(dǎo)入與查看

# -*- coding: utf-8 -*-

# %%time

# from pyhive import presto

import pandas as pd

import numpy as np

import warnings

import os

data=pd.read_csv('*/全域風(fēng)險.csv')

data.head(2)

# label= pd.DataFrame(list(result),columns=columns_names)

# label.to_csv('/data/ljk/baixin.csv',index=False)

數(shù)據(jù)篩選

data2=data[data['fina_date']

feature=['num_id','zhiye','weiyue','gongzhai','qingchang','zhuxing','lvyue','shouxin','xiaofei','xingqu','chengzhang']

data2=data2[feature]

data2.head()

scorecardpy Python包的使用

import scorecardpy as sc

import matplotlib.pyplot as plt

%matplotlib inline

plt.show()

bins_new=sc.woebin(data_new.loc[data_new.overdue!=-1,['zhiye','overdue']], y="overdue")

woebin_plot=sc.woebin_plot(bins_new)

woebin_plot

結(jié)果編輯

# data_new = data_new.drop(['flag','var_name'],axis=1)

merge_result_total = pd.DataFrame()

for cl in data_new.columns[1:]:

x=data_new[data_new[cl]>=0][cl]

if len(set(x))>=10:

value_bins=pd.qcut(x,5,duplicates='drop',retbins=True)[0]

data_new['flag']=value_bins #攔截點打標(biāo)

data_new['var_name']= cl #變量

tmp = data_new[['var_name','flag','overdue']]

tmp.rename(columns={'overdue':'label'},inplace=True)

result_stp=tmp.groupby(['var_name','flag']).count() #攔截數(shù)

result_pos=tmp.groupby(['var_name','flag'])['label'].sum().to_frame() #黑樣本

result_neg=tmp[tmp['label']==0].groupby(['var_name','flag'])['label'].count().to_frame() #白樣本

merge_result=result_stp.merge(result_pos,how='left',on=['var_name','flag']).merge(result_neg,how='left',on=['var_name','flag'])

merge_result.reset_index(inplace=True)

merge_result.rename(columns={'label_x':'stp','label_y':'pos','label':'neg'},inplace=True)

merge_result['rank']=pd.Series([i+1 for i in range(merge_result.shape[0])])

merge_result.sort_values(by=['rank'],axis=0,ascending=True,inplace=True,na_position='last')

merge_result['cunsum_pos']=merge_result.groupby('var_name')['pos'].cumsum()

merge_result['cunsum_neg']=merge_result.groupby('var_name')['neg'].cumsum()

merge_result['cunsum_stp']=merge_result.groupby('var_name')['stp'].cumsum()

merge_result['total_pos']=merge_result[merge_result['rank']== merge_result.shape[0]]['cunsum_pos'].values[0]

merge_result['total_neg']=merge_result[merge_result['rank']== merge_result.shape[0]]['cunsum_neg'].values[0]

merge_result['total_stp']=merge_result[merge_result['rank']== merge_result.shape[0]]['cunsum_stp'].values[0]

res = merge_result

res['intercept']=res['stp']/res['total_stp'] # 區(qū)間攔截率

res['precision']=res['pos']/res['stp'] # 準(zhǔn)確率

res['recall']=res['pos']/res['total_pos'] #召回率

res['Disturb']=res['neg']/res['total_neg'] #打擾率

res['cum_precision']=res['cunsum_pos']/res['cunsum_stp'] # 累計準(zhǔn)確率

res['avg_precision']=res['total_pos']/res['total_stp']

res['cum_recall']=res['cunsum_pos']/res['total_pos'] # 累計召回率

res['cum_Disturb']=res['cunsum_neg']/res['total_neg'] # 累計打擾率

res['ks']=res['cum_recall']-res['cum_Disturb']

res['ks_max']=res.groupby('var_name')['ks'].max().values[0]

rs=res.drop_duplicates(subset=None, keep='first', inplace=False) #去重

merge_result_total = merge_result_total.append(rs)

merge_result_total.rename(columns={'var_name':'變量','flag':'攔截區(qū)間','stp':'攔截樣本數(shù)','pos':'黑樣本數(shù)','neg':'白樣本數(shù)','cunsum_pos':'累計黑樣本數(shù)','cunsum_neg':'累計白樣本數(shù)','cunsum_stp':'累計攔截數(shù)','intercept':'攔截率','precision':'準(zhǔn)確率','recall':'召回率','Disturb':'打擾率','cum_precision':'累計準(zhǔn)確率','avg_precision':'平均準(zhǔn)確率','cum_recall':'累計召回率','cum_Disturb':'累計打擾率','ks':'ks區(qū)間值','ks_max':'ks值','total_pos':'總黑樣本','total_neg':'總白樣本','total_stp':'總樣本'},inplace=True)

merge_result_total.to_csv('*/quanyumob3_result0421.csv',header=True,index=False)

merge_result_total

ks曲線函數(shù)

調(diào)用方法

ks=PlotKS(data_new3['zhiye'],data_new3['overdue'],n=20,asc=True)

ks

plt.show

import pandas as pd

import matplotlib.pyplot as plt

####################### PlotKS ##########################

def PlotKS(preds, labels, n=20, asc=True):

# preds is score: asc=1

# preds is prob: asc=0

pred = preds # 預(yù)測值

bad = labels # 取1為bad, 0為good

ksds = pd.DataFrame({'bad': bad, 'pred': pred})

ksds['good'] = 1 - ksds.bad

if asc == 1:

ksds1 = ksds.sort_values(by=['pred', 'bad'], ascending=[True, True])

elif asc == 0:

ksds1 = ksds.sort_values(by=['pred', 'bad'], ascending=[False, True])

ksds1.index = range(len(ksds1.pred))

ksds1['cumsum_good1'] = 1.0*ksds1.good.cumsum()/sum(ksds1.good)

ksds1['cumsum_bad1'] = 1.0*ksds1.bad.cumsum()/sum(ksds1.bad)

if asc == 1:

ksds2 = ksds.sort_values(by=['pred', 'bad'], ascending=[True, False])

elif asc == 0:

ksds2 = ksds.sort_values(by=['pred', 'bad'], ascending=[False, False])

ksds2.index = range(len(ksds2.pred))

ksds2['cumsum_good2'] = 1.0*ksds2.good.cumsum()/sum(ksds2.good)

ksds2['cumsum_bad2'] = 1.0*ksds2.bad.cumsum()/sum(ksds2.bad)

# ksds1 ksds2 -> average

ksds = ksds1[['cumsum_good1', 'cumsum_bad1']]

ksds['cumsum_good2'] = ksds2['cumsum_good2']

ksds['cumsum_bad2'] = ksds2['cumsum_bad2']

ksds['cumsum_good'] = (ksds['cumsum_good1'] + ksds['cumsum_good2'])/2

ksds['cumsum_bad'] = (ksds['cumsum_bad1'] + ksds['cumsum_bad2'])/2

# ks

ksds['ks'] = ksds['cumsum_bad'] - ksds['cumsum_good']

ksds['tile0'] = range(1, len(ksds.ks) + 1)

ksds['tile'] = 1.0*ksds['tile0']/len(ksds['tile0'])

qe = list(np.arange(0, 1, 1.0/n))

qe.append(1)

qe = qe[1:]

ks_index = pd.Series(ksds.index)

ks_index = ks_index.quantile(q = qe)

ks_index = np.ceil(ks_index).astype(int)

ks_index = list(ks_index)

ksds = ksds.loc[ks_index]

ksds = ksds[['tile', 'cumsum_good', 'cumsum_bad', 'ks']]

ksds0 = np.array([[0, 0, 0, 0]])

ksds = np.concatenate([ksds0, ksds], axis=0)

ksds = pd.DataFrame(ksds, columns=['tile', 'cumsum_good', 'cumsum_bad', 'ks'])

ks_value = ksds.ks.max()

ks_pop = ksds.tile[ksds.ks.idxmax()]

print ('ks_value is ' + str(np.round(ks_value, 4)) + ' at pop = ' + str(np.round(ks_pop, 4)))

# chart

plt.plot(ksds.tile, ksds.cumsum_good, label='cum_good',

color='blue', linestyle='-', linewidth=2)

plt.plot(ksds.tile, ksds.cumsum_bad, label='cum_bad',

color='red', linestyle='-', linewidth=2)

plt.plot(ksds.tile, ksds.ks, label='ks',

color='green', linestyle='-', linewidth=2)

plt.axvline(ks_pop, color='gray', linestyle='--')

plt.axhline(ks_value, color='green', linestyle='--')

plt.axhline(ksds.loc[ksds.ks.idxmax(), 'cumsum_good'], color='blue', linestyle='--')

plt.axhline(ksds.loc[ksds.ks.idxmax(),'cumsum_bad'], color='red', linestyle='--')

plt.title('KS=%s ' %np.round(ks_value, 4) +

'at Pop=%s' %np.round(ks_pop, 4), fontsize=15)

return ksds

總結(jié)

以上是生活随笔為你收集整理的python风控工具_python-风控模型分析01的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。