日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

【数据竞赛】Kaggle秘技,用Sigmoid函数做回归问题!

發(fā)布時間:2025/3/12 编程问答 25 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【数据竞赛】Kaggle秘技,用Sigmoid函数做回归问题! 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

作者:? 塵沙櫻落,杰少

基于Sigmoid的回歸損失函數(shù)設(shè)計

背景

這是一個非常有意思的Loss設(shè)計,在你的問題是回歸問題的時候,都可以考慮嘗試使用一下,并不能保證所有的問題都能奏效,但是在某些特定的問題中卻可以帶來巨大的提升,最不濟(jì)也可以作為一個用于后期stacking的方案。

該方案是設(shè)計者是:數(shù)據(jù)科學(xué)家danzel ,作者對于該設(shè)計奏效的原因描述如下,

I used a sigmoid-output and scaled its range afterwards (to look like the target). Training like this helps the model to converge faster and gives better results.

設(shè)計思路

假設(shè)對于我們的回歸的問題為最小化平方損失,而且我們第個標(biāo)簽為,

  • , 為我們的樣本個數(shù);

1. Baseline Loss

  • 一般都是Dense(1,activation = 'linear')的形式

2. 基于Sigmoid的Loss

  • 是Dense(1,activation = 'sigmoid') * (max_val - min_val) + min_val的形式;

  • ,

案例

上面說的究竟靠譜不靠譜呢?我們摘取kaggle數(shù)據(jù)進(jìn)行實驗,眼見為真。有興趣的朋友可以去文末鏈接下載。

1.導(dǎo)入工具包

1.1導(dǎo)入使用的工具包

import?pandas????????????????as?pd? from?sklearn.metrics?????????import?mean_squared_error from?sklearn.model_selection?import?KFold import?xgboost???????????????as?xgb from???tqdm??????????????????import?tqdm import?numpy?????????????????as?np import?pandas????????????????as?pd? import?tensorflow????????????as?tf? from?lightgbm????????????????import?LGBMRegressor from?sklearn.model_selection?import?KFold import?numpy?????????????????as?np import?seaborn???????????????as?sns from?sklearn.metrics?????????import?mean_squared_errordef?RMSE(y_true,?y_pred):return?tf.sqrt(tf.reduce_mean(tf.square(y_true?-?y_pred)))

1.2 數(shù)據(jù)讀取

train?=?pd.read_csv('./data/train.csv') test??=?pd.read_csv('./data/test.csv') sub???=?pd.read_csv('./data/sample_submission.csv')

2. 數(shù)據(jù)預(yù)處理

2.1 數(shù)據(jù)拼接

train_test?=?pd.concat([train,test],axis=0,ignore_index=True) train_test.head()
idcont1cont2cont3cont4cont5cont6cont7cont8cont9cont10cont11cont12cont13cont14target01234
10.6703900.8113000.6439680.2917910.2841170.8559530.8907000.2855420.5582450.7794180.9218320.8667720.8787330.3054117.243043
30.3880530.6211040.6861020.5011490.6437900.4498050.5108240.5807480.4183350.4326320.4398720.4349710.3699570.3694848.203331
40.8349500.2274360.3015840.2934080.6068390.8291750.5061430.5587710.5876030.8233120.5670070.6777080.8829380.3030477.776091
50.8207080.1601550.5468870.7261040.2824440.7851080.7527580.8232670.5744660.5808430.7695940.8181430.9142810.2795286.957716
80.9352780.4212350.3038010.8802140.6656100.8301310.4871130.6041570.8746580.8634270.9835750.9004640.9359180.4357727.951046

2.2. 用于神經(jīng)網(wǎng)絡(luò)預(yù)處理的GaussianRank

  • 如果希望知道細(xì)節(jié),可以參考之前分享的RankGaussian的部分

import?numpy?as?np from?joblib?import?Parallel,?delayed from?scipy.interpolate?import?interp1d from?scipy.special?import?erf,?erfinv from?sklearn.preprocessing?import?QuantileTransformer,PowerTransformer from?sklearn.base?import?BaseEstimator,?TransformerMixin from?sklearn.utils.validation?import?FLOAT_DTYPES,?check_array,?check_is_fittedclass?GaussRankScaler(BaseEstimator,?TransformerMixin):"""Transform?features?by?scaling?each?feature?to?a?normal?distribution.Parameters----------epsilon?:?float,?optional,?default?1e-4A?small?amount?added?to?the?lower?bound?or?subtractedfrom?the?upper?bound.?This?value?prevents?infinite?numberfrom?occurring?when?applying?the?inverse?error?function.copy?:?boolean,?optional,?default?TrueIf?False,?try?to?avoid?a?copy?and?do?inplace?scaling?instead.This?is?not?guaranteed?to?always?work?inplace;?e.g.?if?the?data?isnot?a?NumPy?array,?a?copy?may?still?be?returned.n_jobs?:?int?or?None,?optional,?default?NoneNumber?of?jobs?to?run?in?parallel.``None``?means?1?and?``-1``?means?using?all?processors.interp_kind?:?str?or?int,?optional,?default?'linear'Specifies?the?kind?of?interpolation?as?a?string('linear',?'nearest',?'zero',?'slinear',?'quadratic',?'cubic','previous',?'next',?where?'zero',?'slinear',?'quadratic'?and?'cubic'refer?to?a?spline?interpolation?of?zeroth,?first,?second?or?thirdorder;?'previous'?and?'next'?simply?return?the?previous?or?next?valueof?the?point)?or?as?an?integer?specifying?the?order?of?the?splineinterpolator?to?use.interp_copy?:?bool,?optional,?default?FalseIf?True,?the?interpolation?function?makes?internal?copies?of?x?and?y.If?False,?references?to?`x`?and?`y`?are?used.Attributes----------interp_func_?:?listThe?interpolation?function?for?each?feature?in?the?training?set."""def?__init__(self,?epsilon=1e-4,?copy=True,?n_jobs=None,?interp_kind='linear',?interp_copy=False):self.epsilon?????=?epsilonself.copy????????=?copyself.interp_kind?=?interp_kindself.interp_copy?=?interp_copyself.fill_value??=?'extrapolate'self.n_jobs??????=?n_jobsdef?fit(self,?X,?y=None):"""Fit?interpolation?function?to?link?rank?with?original?data?for?future?scalingParameters----------X?:?array-like,?shape?(n_samples,?n_features)The?data?used?to?fit?interpolation?function?for?later?scaling?along?the?features?axis.yIgnored"""X?=?check_array(X,?copy=self.copy,?estimator=self,?dtype=FLOAT_DTYPES,?force_all_finite=True)self.interp_func_?=?Parallel(n_jobs=self.n_jobs)(delayed(self._fit)(x)?for?x?in?X.T)return?selfdef?_fit(self,?x):x?=?self.drop_duplicates(x)rank?=?np.argsort(np.argsort(x))bound?=?1.0?-?self.epsilonfactor?=?np.max(rank)?/?2.0?*?boundscaled_rank?=?np.clip(rank?/?factor?-?bound,?-bound,?bound)return?interp1d(x,?scaled_rank,?kind=self.interp_kind,?copy=self.interp_copy,?fill_value=self.fill_value)def?transform(self,?X,?copy=None):"""Scale?the?data?with?the?Gauss?Rank?algorithmParameters----------X?:?array-like,?shape?(n_samples,?n_features)The?data?used?to?scale?along?the?features?axis.copy?:?bool,?optional?(default:?None)Copy?the?input?X?or?not."""check_is_fitted(self,?'interp_func_')copy?=?copy?if?copy?is?not?None?else?self.copyX?=?check_array(X,?copy=copy,?estimator=self,?dtype=FLOAT_DTYPES,?force_all_finite=True)X?=?np.array(Parallel(n_jobs=self.n_jobs)(delayed(self._transform)(i,?x)?for?i,?x?in?enumerate(X.T))).Treturn?Xdef?_transform(self,?i,?x):return?erfinv(self.interp_func_[i](x))def?inverse_transform(self,?X,?copy=None):"""Scale?back?the?data?to?the?original?representationParameters----------X?:?array-like,?shape?[n_samples,?n_features]The?data?used?to?scale?along?the?features?axis.copy?:?bool,?optional?(default:?None)Copy?the?input?X?or?not."""check_is_fitted(self,?'interp_func_')copy?=?copy?if?copy?is?not?None?else?self.copyX?=?check_array(X,?copy=copy,?estimator=self,?dtype=FLOAT_DTYPES,?force_all_finite=True)X?=?np.array(Parallel(n_jobs=self.n_jobs)(delayed(self._inverse_transform)(i,?x)?for?i,?x?in?enumerate(X.T))).Treturn?Xdef?_inverse_transform(self,?i,?x):inv_interp_func?=?interp1d(self.interp_func_[i].y,?self.interp_func_[i].x,?kind=self.interp_kind,copy=self.interp_copy,?fill_value=self.fill_value)return?inv_interp_func(erf(x))@staticmethoddef?drop_duplicates(x):is_unique?=?np.zeros_like(x,?dtype=bool)is_unique[np.unique(x,?return_index=True)[1]]?=?Truereturn?x[is_unique]

2.3 RankGaussian處理

feature_names?=?['cont1',?'cont2',?'cont3',?'cont4',?'cont5',?'cont6',?'cont7','cont8',?'cont9',?'cont10',?'cont11',?'cont12',?'cont13',?'cont14'] scaler_linear????=?GaussRankScaler(interp_kind='linear',)? for?c?in?feature_names:train_test[c+'_linear_grank']?=?scaler_linear.fit_transform(train_test[c].values.reshape(-1,1))gaussian_linear_feature_names?=?[c?+?'_linear_grank'?for?c?in?feature_names]

3. NN模型建模

from?tensorflow.keras?import?regularizers from?sklearn.model_selection?import?KFold,?StratifiedKFold import?tensorflow?as?tf #?import?tensorflow_addons?as?tfa import?tensorflow.keras.backend?as?K from?tensorflow.keras.layers?import?* from?tensorflow.keras.models?import?* from?tensorflow.keras.optimizers?import?* from?tensorflow.keras.callbacks?import?* from?tensorflow.keras.layers?import?Input import?os?

3.1 訓(xùn)練&驗證劃分

  • 隨機(jī)劃分訓(xùn)練集和驗證集

tr?=?train_test.iloc[:train.shape[0],:].copy() te?=?train_test.iloc[train.shape[0]:,:].copy()? kf??????????=?KFold(n_splits=5,random_state=48,shuffle=False)? cnt?????????=?0 for?trn_idx,?test_idx?in?kf.split(tr,tr['target']):if?cnt?==?0:cnt?+=?1continueX_tr_gbdt,X_val_gbdt?=?tr[feature_names].iloc[trn_idx],tr[feature_names].iloc[test_idx]X_tr_dnn_linear_gaussian,X_val_dnn_linear_gaussian?=?tr[gaussian_linear_feature_names].iloc[trn_idx],tr[gaussian_linear_feature_names].iloc[test_idx]y_tr,y_val?=?tr['target'].iloc[trn_idx],train['target'].iloc[test_idx]break /home/inf/anaconda3/lib/python3.7/site-packages/sklearn/model_selection/_split.py:297: FutureWarning: Setting a random_state has no effect since shuffle is False. This will raise an error in 0.24. You should leave random_state to its default (None), or set shuffle=True.FutureWarning

3.2 MLP模型(sigmoid):0.7108

  • 基于sigmoid的回歸

class?MLP_Model(tf.keras.Model):?def?__init__(self):super(MLP_Model,?self).__init__()?self.dense1?=Dense(1000,?activation='relu')??self.drop1??=?Dropout(0.25)self.dense2?=Dense(500,?activation='relu')??self.drop2??=?Dropout(0.25)?self.dense_out?=Dense(1,activation='sigmoid')?def?call(self,?inputs):min_target?=?0max_target?=?10.26757x1??????=?self.dense1(inputs)x1??????=?self.drop1(x1)x2??????=?self.dense2(x1)x2??????=?self.drop2(x2)outputs??????=?self.dense_out(x2)outputs??=??outputs?*?(max_target?-?min_target)?+?min_target??return?outputsimport?time?? def?RMSE(y_true,?y_pred):return?tf.sqrt(tf.reduce_mean(tf.square(y_true?-?y_pred)))model?=?MLP_Model() adam?=?tf.optimizers.Adam(lr=1e-3) model.compile(optimizer=adam,?loss=RMSE)K.clear_session()? model_weights?=?f'./models/model_gauss_mlp_mlp.h5' checkpoint?=?ModelCheckpoint(model_weights,?monitor='loss',?verbose=0,?save_best_only=True,?mode='min',save_weights_only=True) plateau????????=?ReduceLROnPlateau(monitor='val_loss',?factor=0.5,?patience=10,?verbose=1,?min_delta=1e-4,?mode='min') early_stopping?=?EarlyStopping(monitor="val_loss",?patience=25) history?=?model.fit(X_tr_dnn_linear_gaussian.values,?y_tr.values,validation_data=(X_val_dnn_linear_gaussian.values,?y_val.values),batch_size=1024,?epochs=100,callbacks=[plateau,?checkpoint,?early_stopping],verbose=2)? WARNING:tensorflow:Entity <bound method MLP_Model.call of <__main__.MLP_Model object at 0x7f4818de1e50>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Failed to parse source code of <bound method MLP_Model.call of <__main__.MLP_Model object at 0x7f4818de1e50>>, which Python reported as:def call(self, inputs):min_target = 0max_target = 10.26757x1 = self.dense1(inputs)x1 = self.drop1(x1)x2 = self.dense2(x1)x2 = self.drop2(x2)outputs = self.dense_out(x2)outputs = outputs * (max_target - min_target) + min_target # outputs = self.dense_out(x3) # 1500 original return outputsThis may be caused by multiline strings or comments not indented at the same level as the code. WARNING: Entity <bound method MLP_Model.call of <__main__.MLP_Model object at 0x7f4818de1e50>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Failed to parse source code of <bound method MLP_Model.call of <__main__.MLP_Model object at 0x7f4818de1e50>>, which Python reported as:def call(self, inputs):min_target = 0max_target = 10.26757x1 = self.dense1(inputs)x1 = self.drop1(x1)x2 = self.dense2(x1)x2 = self.drop2(x2)outputs = self.dense_out(x2)outputs = outputs * (max_target - min_target) + min_target # outputs = self.dense_out(x3) # 1500 original return outputsThis may be caused by multiline strings or comments not indented at the same level as the code. Train on 240000 samples, validate on 60000 samples Epoch 1/100 WARNING:tensorflow:Entity <function Function._initialize_uninitialized_variables.<locals>.initialize_variables at 0x7f4818c32950> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num' WARNING: Entity <function Function._initialize_uninitialized_variables.<locals>.initialize_variables at 0x7f4818c32950> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num' 240000/240000 - 1s - loss: 0.8020 - val_loss: 0.7203 Epoch 2/100 240000/240000 - 0s - loss: 0.7345 - val_loss: 0.7225 Epoch 3/100 240000/240000 - 0s - loss: 0.7290 - val_loss: 0.7183 Epoch 4/100 240000/240000 - 0s - loss: 0.7270 - val_loss: 0.7197 Epoch 5/100 240000/240000 - 0s - loss: 0.7247 - val_loss: 0.7170 Epoch 6/100 240000/240000 - 0s - loss: 0.7232 - val_loss: 0.7190 Epoch 7/100 240000/240000 - 0s - loss: 0.7227 - val_loss: 0.7157 Epoch 8/100 240000/240000 - 0s - loss: 0.7205 - val_loss: 0.7215 Epoch 9/100 240000/240000 - 0s - loss: 0.7199 - val_loss: 0.7144 Epoch 10/100 240000/240000 - 0s - loss: 0.7185 - val_loss: 0.7148 Epoch 11/100 240000/240000 - 0s - loss: 0.7175 - val_loss: 0.7176 Epoch 12/100 240000/240000 - 0s - loss: 0.7170 - val_loss: 0.7147 Epoch 13/100 240000/240000 - 0s - loss: 0.7165 - val_loss: 0.7142 Epoch 14/100 240000/240000 - 0s - loss: 0.7157 - val_loss: 0.7140 Epoch 15/100 240000/240000 - 0s - loss: 0.7150 - val_loss: 0.7132 Epoch 16/100 240000/240000 - 0s - loss: 0.7145 - val_loss: 0.7127 Epoch 17/100 240000/240000 - 0s - loss: 0.7136 - val_loss: 0.7127 Epoch 18/100 240000/240000 - 0s - loss: 0.7131 - val_loss: 0.7124 Epoch 19/100 240000/240000 - 0s - loss: 0.7126 - val_loss: 0.7165 Epoch 20/100 240000/240000 - 0s - loss: 0.7120 - val_loss: 0.7130 Epoch 21/100 240000/240000 - 0s - loss: 0.7116 - val_loss: 0.7119 Epoch 22/100 240000/240000 - 0s - loss: 0.7111 - val_loss: 0.7129 Epoch 23/100 240000/240000 - 0s - loss: 0.7104 - val_loss: 0.7129 Epoch 24/100 240000/240000 - 0s - loss: 0.7102 - val_loss: 0.7136 Epoch 25/100 240000/240000 - 0s - loss: 0.7097 - val_loss: 0.7120 Epoch 26/100 240000/240000 - 0s - loss: 0.7089 - val_loss: 0.7126 Epoch 27/100 240000/240000 - 0s - loss: 0.7084 - val_loss: 0.7154 Epoch 28/100 240000/240000 - 0s - loss: 0.7078 - val_loss: 0.7111 Epoch 29/100 240000/240000 - 0s - loss: 0.7075 - val_loss: 0.7132 Epoch 30/100 240000/240000 - 0s - loss: 0.7074 - val_loss: 0.7126 Epoch 31/100 240000/240000 - 0s - loss: 0.7062 - val_loss: 0.7129 Epoch 32/100 240000/240000 - 0s - loss: 0.7059 - val_loss: 0.7119 Epoch 33/100 240000/240000 - 0s - loss: 0.7054 - val_loss: 0.7135 Epoch 34/100 240000/240000 - 0s - loss: 0.7048 - val_loss: 0.7108 Epoch 35/100 240000/240000 - 0s - loss: 0.7048 - val_loss: 0.7116 Epoch 36/100 240000/240000 - 0s - loss: 0.7037 - val_loss: 0.7161 Epoch 37/100 240000/240000 - 0s - loss: 0.7034 - val_loss: 0.7131 Epoch 38/100 240000/240000 - 0s - loss: 0.7031 - val_loss: 0.7148 Epoch 39/100 240000/240000 - 0s - loss: 0.7022 - val_loss: 0.7113 Epoch 40/100 240000/240000 - 0s - loss: 0.7013 - val_loss: 0.7117 Epoch 41/100 240000/240000 - 0s - loss: 0.7012 - val_loss: 0.7124 Epoch 42/100 240000/240000 - 0s - loss: 0.7008 - val_loss: 0.7116 Epoch 43/100 240000/240000 - 0s - loss: 0.7001 - val_loss: 0.7124 Epoch 44/100Epoch 00044: ReduceLROnPlateau reducing learning rate to 0.0005000000237487257. 240000/240000 - 0s - loss: 0.6995 - val_loss: 0.7113 Epoch 45/100 240000/240000 - 0s - loss: 0.6962 - val_loss: 0.7116 Epoch 46/100 240000/240000 - 0s - loss: 0.6954 - val_loss: 0.7118 Epoch 47/100 240000/240000 - 0s - loss: 0.6940 - val_loss: 0.7116 Epoch 48/100 240000/240000 - 0s - loss: 0.6938 - val_loss: 0.7120 Epoch 49/100 240000/240000 - 0s - loss: 0.6930 - val_loss: 0.7118 Epoch 50/100 240000/240000 - 0s - loss: 0.6927 - val_loss: 0.7123 Epoch 51/100 240000/240000 - 0s - loss: 0.6920 - val_loss: 0.7123 Epoch 52/100 240000/240000 - 0s - loss: 0.6915 - val_loss: 0.7125 Epoch 53/100 240000/240000 - 0s - loss: 0.6912 - val_loss: 0.7144 Epoch 54/100Epoch 00054: ReduceLROnPlateau reducing learning rate to 0.0002500000118743628. 240000/240000 - 0s - loss: 0.6905 - val_loss: 0.7146 Epoch 55/100 240000/240000 - 0s - loss: 0.6885 - val_loss: 0.7123 Epoch 56/100 240000/240000 - 0s - loss: 0.6874 - val_loss: 0.7135 Epoch 57/100 240000/240000 - 0s - loss: 0.6872 - val_loss: 0.7136 Epoch 58/100 240000/240000 - 0s - loss: 0.6868 - val_loss: 0.7138 Epoch 59/100 240000/240000 - 0s - loss: 0.6863 - val_loss: 0.7134

3.3 MLP模型(linear):0.7137

class?MLP_Model(tf.keras.Model):def?__init__(self):super(MLP_Model,?self).__init__()?self.dense1?=Dense(1000,?activation='relu')??self.drop1??=?Dropout(0.25)self.dense2?=Dense(500,?activation='relu')?self.drop2??=?Dropout(0.25)?self.dense_out?=Dense(1)def?call(self,?inputs):?x1??????=?self.dense1(inputs)x1??????=?self.drop1(x1)x2??????=?self.dense2(x1)x2??????=?self.drop2(x2)outputs?=?self.dense_out(x2)?return?outputsmodel?=?MLP_Model() adam?=?tf.optimizers.Adam(lr=1e-3)? model.compile(optimizer=adam,?loss=RMSE)K.clear_session()? model_weights?=?f'./models/model_gauss_mlp_mlp.h5' checkpoint?=?ModelCheckpoint(model_weights,?monitor='loss',?verbose=0,?save_best_only=True,?mode='min',save_weights_only=True) plateau????????=?ReduceLROnPlateau(monitor='val_loss',?factor=0.5,?patience=10,?verbose=1,?min_delta=1e-4,?mode='min') early_stopping?=?EarlyStopping(monitor="val_loss",?patience=25) history?=?model.fit(X_tr_dnn_linear_gaussian.values,?y_tr.values,validation_data=(X_val_dnn_linear_gaussian.values,?y_val.values),batch_size=1024,?epochs=100,callbacks=[plateau,?checkpoint,?early_stopping],verbose=2)? WARNING:tensorflow:Entity <bound method MLP_Model.call of <__main__.MLP_Model object at 0x7f48083f7d50>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Bad argument number for Name: 3, expecting 4 WARNING: Entity <bound method MLP_Model.call of <__main__.MLP_Model object at 0x7f48083f7d50>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Bad argument number for Name: 3, expecting 4 Train on 240000 samples, validate on 60000 samples Epoch 1/100 WARNING:tensorflow:Entity <function Function._initialize_uninitialized_variables.<locals>.initialize_variables at 0x7f4818c487a0> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num' WARNING: Entity <function Function._initialize_uninitialized_variables.<locals>.initialize_variables at 0x7f4818c487a0> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num' 240000/240000 - 1s - loss: 1.3292 - val_loss: 0.7767 Epoch 2/100 240000/240000 - 0s - loss: 0.8163 - val_loss: 0.7251 Epoch 3/100 240000/240000 - 0s - loss: 0.8072 - val_loss: 0.7251 Epoch 4/100 240000/240000 - 0s - loss: 0.8040 - val_loss: 0.7496 Epoch 5/100 240000/240000 - 0s - loss: 0.7997 - val_loss: 0.7324 Epoch 6/100 240000/240000 - 0s - loss: 0.7982 - val_loss: 0.7271 Epoch 7/100 240000/240000 - 0s - loss: 0.7936 - val_loss: 0.7202 Epoch 8/100 240000/240000 - 0s - loss: 0.7950 - val_loss: 0.7249 Epoch 9/100 240000/240000 - 0s - loss: 0.7914 - val_loss: 0.7284 Epoch 10/100 240000/240000 - 0s - loss: 0.7882 - val_loss: 0.7313 Epoch 11/100 240000/240000 - 0s - loss: 0.7886 - val_loss: 0.7303 Epoch 12/100 240000/240000 - 0s - loss: 0.7857 - val_loss: 0.7292 Epoch 13/100 240000/240000 - 0s - loss: 0.7855 - val_loss: 0.7257 Epoch 14/100 240000/240000 - 0s - loss: 0.7847 - val_loss: 0.7204 Epoch 15/100 240000/240000 - 0s - loss: 0.7825 - val_loss: 0.7224 Epoch 16/100 240000/240000 - 0s - loss: 0.7813 - val_loss: 0.7220 Epoch 17/100Epoch 00017: ReduceLROnPlateau reducing learning rate to 0.0005000000237487257. 240000/240000 - 0s - loss: 0.7808 - val_loss: 0.7208 Epoch 18/100 240000/240000 - 0s - loss: 0.7752 - val_loss: 0.7187 Epoch 19/100 240000/240000 - 0s - loss: 0.7743 - val_loss: 0.7234 Epoch 20/100 240000/240000 - 0s - loss: 0.7730 - val_loss: 0.7190 Epoch 21/100 240000/240000 - 0s - loss: 0.7750 - val_loss: 0.7196 Epoch 22/100 240000/240000 - 0s - loss: 0.7742 - val_loss: 0.7286 Epoch 23/100 240000/240000 - 0s - loss: 0.7722 - val_loss: 0.7198 Epoch 24/100 240000/240000 - 0s - loss: 0.7720 - val_loss: 0.7227 Epoch 25/100 240000/240000 - 0s - loss: 0.7724 - val_loss: 0.7176 Epoch 26/100 240000/240000 - 0s - loss: 0.7705 - val_loss: 0.7194 Epoch 27/100 240000/240000 - 0s - loss: 0.7689 - val_loss: 0.7206 Epoch 28/100 240000/240000 - 0s - loss: 0.7696 - val_loss: 0.7168 Epoch 29/100 240000/240000 - 0s - loss: 0.7695 - val_loss: 0.7171 Epoch 30/100 240000/240000 - 0s - loss: 0.7681 - val_loss: 0.7164 Epoch 31/100 240000/240000 - 0s - loss: 0.7676 - val_loss: 0.7225 Epoch 32/100 240000/240000 - 0s - loss: 0.7681 - val_loss: 0.7177 Epoch 33/100 240000/240000 - 0s - loss: 0.7660 - val_loss: 0.7198 Epoch 34/100 240000/240000 - 0s - loss: 0.7668 - val_loss: 0.7202 Epoch 35/100 240000/240000 - 0s - loss: 0.7653 - val_loss: 0.7160 Epoch 36/100 240000/240000 - 0s - loss: 0.7647 - val_loss: 0.7248 Epoch 37/100 240000/240000 - 0s - loss: 0.7638 - val_loss: 0.7173 Epoch 38/100 240000/240000 - 0s - loss: 0.7626 - val_loss: 0.7197 Epoch 39/100 240000/240000 - 0s - loss: 0.7624 - val_loss: 0.7182 Epoch 40/100 240000/240000 - 0s - loss: 0.7615 - val_loss: 0.7195 Epoch 41/100 240000/240000 - 0s - loss: 0.7621 - val_loss: 0.7195 Epoch 42/100 240000/240000 - 0s - loss: 0.7616 - val_loss: 0.7192 Epoch 43/100 240000/240000 - 0s - loss: 0.7604 - val_loss: 0.7162 Epoch 44/100 240000/240000 - 0s - loss: 0.7592 - val_loss: 0.7152 Epoch 45/100 240000/240000 - 0s - loss: 0.7600 - val_loss: 0.7193 Epoch 46/100 240000/240000 - 0s - loss: 0.7594 - val_loss: 0.7206 Epoch 47/100 240000/240000 - 0s - loss: 0.7578 - val_loss: 0.7201 Epoch 48/100 240000/240000 - 0s - loss: 0.7583 - val_loss: 0.7164 Epoch 49/100 240000/240000 - 0s - loss: 0.7581 - val_loss: 0.7163 Epoch 50/100 240000/240000 - 0s - loss: 0.7572 - val_loss: 0.7163 Epoch 51/100 240000/240000 - 0s - loss: 0.7554 - val_loss: 0.7166 Epoch 52/100 240000/240000 - 0s - loss: 0.7564 - val_loss: 0.7212 Epoch 53/100 240000/240000 - 0s - loss: 0.7560 - val_loss: 0.7156 Epoch 54/100Epoch 00054: ReduceLROnPlateau reducing learning rate to 0.0002500000118743628. 240000/240000 - 0s - loss: 0.7547 - val_loss: 0.7180 Epoch 55/100 240000/240000 - 0s - loss: 0.7530 - val_loss: 0.7154 Epoch 56/100 240000/240000 - 0s - loss: 0.7534 - val_loss: 0.7150 Epoch 57/100 240000/240000 - 0s - loss: 0.7531 - val_loss: 0.7148 Epoch 58/100 240000/240000 - 0s - loss: 0.7530 - val_loss: 0.7156 Epoch 59/100 240000/240000 - 0s - loss: 0.7523 - val_loss: 0.7166 Epoch 60/100 240000/240000 - 0s - loss: 0.7522 - val_loss: 0.7152 Epoch 61/100 240000/240000 - 0s - loss: 0.7520 - val_loss: 0.7155 Epoch 62/100 240000/240000 - 0s - loss: 0.7514 - val_loss: 0.7148 Epoch 63/100 240000/240000 - 0s - loss: 0.7514 - val_loss: 0.7149 Epoch 64/100 240000/240000 - 0s - loss: 0.7506 - val_loss: 0.7156 Epoch 65/100 240000/240000 - 0s - loss: 0.7508 - val_loss: 0.7150 Epoch 66/100 240000/240000 - 0s - loss: 0.7516 - val_loss: 0.7154 Epoch 67/100Epoch 00067: ReduceLROnPlateau reducing learning rate to 0.0001250000059371814. 240000/240000 - 0s - loss: 0.7507 - val_loss: 0.7153 Epoch 68/100 240000/240000 - 0s - loss: 0.7502 - val_loss: 0.7149 Epoch 69/100 240000/240000 - 0s - loss: 0.7497 - val_loss: 0.7147 Epoch 70/100 240000/240000 - 0s - loss: 0.7496 - val_loss: 0.7148 Epoch 71/100 240000/240000 - 0s - loss: 0.7502 - val_loss: 0.7142 Epoch 72/100 240000/240000 - 0s - loss: 0.7492 - val_loss: 0.7148 Epoch 73/100 240000/240000 - 0s - loss: 0.7487 - val_loss: 0.7148 Epoch 74/100 240000/240000 - 0s - loss: 0.7485 - val_loss: 0.7143 Epoch 75/100 240000/240000 - 0s - loss: 0.7496 - val_loss: 0.7154 Epoch 76/100 240000/240000 - 0s - loss: 0.7482 - val_loss: 0.7144 Epoch 77/100 240000/240000 - 0s - loss: 0.7488 - val_loss: 0.7142 Epoch 78/100 240000/240000 - 0s - loss: 0.7492 - val_loss: 0.7145 Epoch 79/100 240000/240000 - 0s - loss: 0.7483 - val_loss: 0.7143 Epoch 80/100 240000/240000 - 0s - loss: 0.7478 - val_loss: 0.7143 Epoch 81/100Epoch 00081: ReduceLROnPlateau reducing learning rate to 6.25000029685907e-05. 240000/240000 - 0s - loss: 0.7481 - val_loss: 0.7143 Epoch 82/100 240000/240000 - 0s - loss: 0.7480 - val_loss: 0.7146 Epoch 83/100 240000/240000 - 0s - loss: 0.7477 - val_loss: 0.7141 Epoch 84/100 240000/240000 - 0s - loss: 0.7471 - val_loss: 0.7139 Epoch 85/100 240000/240000 - 0s - loss: 0.7475 - val_loss: 0.7140 Epoch 86/100 240000/240000 - 0s - loss: 0.7473 - val_loss: 0.7141 Epoch 87/100 240000/240000 - 0s - loss: 0.7469 - val_loss: 0.7141 Epoch 88/100 240000/240000 - 0s - loss: 0.7474 - val_loss: 0.7148 Epoch 89/100 240000/240000 - 0s - loss: 0.7467 - val_loss: 0.7138 Epoch 90/100 240000/240000 - 0s - loss: 0.7466 - val_loss: 0.7142 Epoch 91/100 240000/240000 - 0s - loss: 0.7460 - val_loss: 0.7141 Epoch 92/100 240000/240000 - 0s - loss: 0.7465 - val_loss: 0.7138 Epoch 93/100 240000/240000 - 0s - loss: 0.7469 - val_loss: 0.7142 Epoch 94/100 240000/240000 - 0s - loss: 0.7467 - val_loss: 0.7141 Epoch 95/100 240000/240000 - 0s - loss: 0.7465 - val_loss: 0.7148 Epoch 96/100 240000/240000 - 0s - loss: 0.7465 - val_loss: 0.7138 Epoch 97/100 240000/240000 - 0s - loss: 0.7461 - val_loss: 0.7138 Epoch 98/100 240000/240000 - 0s - loss: 0.7456 - val_loss: 0.7140 Epoch 99/100Epoch 00099: ReduceLROnPlateau reducing learning rate to 3.125000148429535e-05. 240000/240000 - 0s - loss: 0.7463 - val_loss: 0.7139 Epoch 100/100 240000/240000 - 0s - loss: 0.7461 - val_loss: 0.7137

參考文獻(xiàn)

  • https://www.kaggle.com/c/tabular-playground-series-jan-2021/data

  • https://www.kaggle.com/c/tabular-playground-series-jan-2021/discussion/216037

  • 往期精彩回顧適合初學(xué)者入門人工智能的路線及資料下載機(jī)器學(xué)習(xí)及深度學(xué)習(xí)筆記等資料打印機(jī)器學(xué)習(xí)在線手冊深度學(xué)習(xí)筆記專輯《統(tǒng)計學(xué)習(xí)方法》的代碼復(fù)現(xiàn)專輯 AI基礎(chǔ)下載機(jī)器學(xué)習(xí)的數(shù)學(xué)基礎(chǔ)專輯 本站知識星球“黃博的機(jī)器學(xué)習(xí)圈子”(92416895) 本站qq群704220115。 加入微信群請掃碼:

    總結(jié)

    以上是生活随笔為你收集整理的【数据竞赛】Kaggle秘技,用Sigmoid函数做回归问题!的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。