【NLP】面向对话的机器阅读理解任务(Dialogue MRC)相关论文整理
來自 | 知乎 作者 | 李家琦
鏈接|https://zhuanlan.zhihu.com/p/410984053
本文已獲作者授權,未經許可禁止二次轉載
Dialogue-based Machine Reading Comprehension任務是近兩年比較新的機器閱讀理解(MRC)任務,任務目標是讓機器去理解人們之間的對話。本文簡要整理了該任務現有數據集,并推薦幾篇相關論文。
一、數據集
該任務現有的數據集主要有如下這些:
1. Ma et, al, 2018, NAACL(數據集沒有命名)
任務類型:完形填空
論文:Challenging reading comprehension on daily conversation: Passage completion on multiparty dialog.
數據集:GitHub - emorynlp/reading-comprehension: Reading comprehension on multiparty dialog.
2.?DREAM, TACL 2019
任務類型:單選題
論文:Dream: A challenge data set and models for dialogue-based reading comprehension.
數據集:A Challenge Dataset and Models for Dialogue-Based Reading Comprehension
3.?FriendsQA, SIGDial 2019
任務類型:Span-base
論文:FriendsQA: Open-Domain Question Answering on TV Show Transcripts
數據集:GitHub - emorynlp/FriendsQA: Question answering on multiparty dialogue
4.?Molweni,COLING 2020
任務類型:Span-based
論文:Molweni: A Challenge Multiparty Dialogue-based Machine Reading Comprehension Dataset with Discourse Structure
數據集:GitHub - HIT-SCIR/Molweni
5.?QAConv, arXiv 2021
任務類型:Span-based
論文:QAConv: Question Answering on Informative Conversations
數據集:GitHub - salesforce/QAConv: This repository maintains the QAConv dataset, a question-answering dataset on informative conversations including business emails, panel discussions, and work channels.
目前此任務上使用比較多的數據集主要是DREAM、FriendsQA和Molweni。在QAConv數據集論文中,作者還將現有的幾個數據集進行了對比。
數據集對比,來自QAConv論文
二、模型
這部分主要推薦DREAM、FriendsQA和Molweni這3個數據集上比較有代表性的模型論文。
1. DREAM數據集相關模型論文推薦
a.?DUMA: Reading Comprehension with Transposition Thinking. arXiv 2020.
b.?Multi-task Learning with Multi-head Attention for Multi-choice Reading Comprehension. arXiv 2020.
2.?FriendsQA數據集相關模型論文推薦
a.?Transformers to Learn Hierarchical Contexts in Multiparty Dialogue for Span-based Question Answering. ACL 2020.
b.?Graph-based knowledge integration for question answering over dialogue. COLING 2020.
3.?Molweni數據集相關模型論文推薦
a.?DADgraph: A Discourse-aware Dialogue Graph Neural Network for Multiparty Dialogue Machine Reading Comprehension. IJCNN 2021.
b.?Self-and Pseudo-self-supervised Prediction of Speaker and Key-utterance for Multi-party Dialogue Reading Comprehension. EMNLP 2021 Findings.
c.?Enhanced Speaker-aware Multi-party Multi-turn Dialogue Comprehension. arXiv 2021.
以上是我簡單整理的Dialogue MRC任務數據集和推薦的幾篇相關論文,歡迎補充!
往期精彩回顧適合初學者入門人工智能的路線及資料下載機器學習及深度學習筆記等資料打印機器學習在線手冊深度學習筆記專輯《統計學習方法》的代碼復現專輯 AI基礎下載黃海廣老師《機器學習課程》視頻課黃海廣老師《機器學習課程》711頁完整版課件本站qq群554839127,加入微信群請掃碼:
總結
以上是生活随笔為你收集整理的【NLP】面向对话的机器阅读理解任务(Dialogue MRC)相关论文整理的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【机器学习】盘点Kaggle中常见的Au
- 下一篇: 输入过滤筛选下拉信息(类似百度输入)