日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

vb.net 2019-机器学习ml.net情绪分析(3)

發布時間:2025/3/12 编程问答 23 豆豆
生活随笔 收集整理的這篇文章主要介紹了 vb.net 2019-机器学习ml.net情绪分析(3) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

(11)評估模型,保存模型

Imports System Imports System.Collections Imports System.IO Imports System.Linq Imports Microsoft.Data.DataView Imports Microsoft.ML Imports Microsoft.ML.Data Imports Microsoft.ML.Trainers Imports Microsoft.ML.Transforms.TextModule ProgramPrivate ReadOnly _dataPath As String = Path.Combine(Environment.CurrentDirectory, "data", "yelp_labelled.txt")Private ReadOnly _modelPath As String = Path.Combine(Environment.CurrentDirectory, "data", "model.zip")Public ReadOnly Property DataPath As StringGetReturn _dataPathEnd GetEnd PropertyPublic ReadOnly Property ModelPath As StringGetReturn _modelPathEnd GetEnd PropertySub Main(args As String())'創建上下文ML作業Dim mlConText As New MLContextDim splitDataView As TrainCatalogBase.TrainTestData = LoadData(mlConText)Dim model As ITransformer = BuildAndTrainModel(mlConText, splitDataView.TrainSet)Evaluate(mlConText, model, splitDataView.TestSet)End SubPublic Function BuildAndTrainModel(mlContext As MLContext, splitTrainSet As IDataView) As ITransformer'將文本列特征化為機器學習算法使用的名為Features的數值向量的FeaturizeText,再將決策樹算法追加到管道Dim pipleline = mlContext.Transforms.Text.FeaturizeText(outputColumnName:=DefaultColumnNames.Features, inputColumnName:=NameOf(SentimentData.SentimentText)).Append(mlContext.BinaryClassification.Trainers.FastTree(numLeaves:=50, numTrees:=50, minDatapointsInLeaves:=20))Dim model = pipleline.Fit(splitTrainSet)Return modelEnd FunctionPublic Function LoadData(mlContext As MLContext) As TrainCatalogBase.TrainTestData'加載數據,將數據集分為訓練集與測試集并返回'加載數據集通過基本的數據管道dataviewDim dataView As IDataView = mlContext.Data.LoadFromTextFile(Of SentimentData)(_dataPath, hasHeader:=False)'拆分數據集進行模型訓練和測試,20%的測試集Dim splitDataView As TrainCatalogBase.TrainTestData = mlContext.BinaryClassification.TrainTestSplit(dataView, testFraction:=0.2)Return splitDataViewEnd FunctionPublic Sub Evaluate(mlContext As MLContext, model As ITransformer, splitTestSet As IDataView)'加載測試數據集,創建分類計算器,評估模型并創建指標,顯示效果指標Console.WriteLine("===用測試數據評估模型正確率===")'返回預測Dim predictions As IDataView = model.Transform(splitTestSet)'計算預測模型質量指標Dim metrics As CalibratedBinaryClassificationMetrics = mlContext.BinaryClassification.Evaluate(predictions, "label")'顯示模型驗證指標Console.WriteLine("正確率:" & metrics.Accuracy)Console.WriteLine("AUC:" & metrics.Auc)Console.WriteLine("F1Score:" & metrics.F1Score)SaveModelAsFile(mlContext, model)End SubPrivate Sub SaveModelAsFile(mlContext As MLContext, model As ITransformer)Throw New NotImplementedException()Using fs As New FileStream(ModelPath, FileMode.Create, FileAccess.Write, FileShare.Write))mlContext.Model.Save(model, fs)Console.WriteLine("模型存入" & ModelPath)End UsingEnd Sub End Module

總結

以上是生活随笔為你收集整理的vb.net 2019-机器学习ml.net情绪分析(3)的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。