日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程语言 > python >内容正文

python

python minimize_Python数学规划案例一

發布時間:2025/3/12 python 48 豆豆
生活随笔 收集整理的這篇文章主要介紹了 python minimize_Python数学规划案例一 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

Python數學規劃案例一

問題、模型、數據、算法、結果,統一地表述,是習慣也是效率。

我的公眾號

數學規劃模型表述習慣

采用五個部分:Set, Data, Variable, Objective, Constraints;每個Notation,采用一個主字符,上標表示含義,下標來自Set;已知的大寫,未知的小寫,下標用小寫;妥善選擇Notation中的每一個字符;對Notation、Objective、Constratins進行分組。模型即代碼、即注釋、即文章。

數學規劃模型編碼習慣

Ptyhon程序設計代碼與模型表述嚴格一致 Set, Data, Variable, Objective, Constraints盡量相應“翻譯”;將模型、數據預處理、模型結果后處理,分離開來,保持模型的干凈、純粹。代碼即模型、即文檔、即文章。

一個例子

預算約束下營養配餐。取自:

...\IBM\ILOG\CPLEX_Studio129\python\examples\mp\modeling\diet.py

模型

采用五個部分:Set, Data, Variable, Objective, Constraints建模。

代碼

根據diet.py改寫的代碼如下。

# -*- coding: utf-8 -*-

from collections import namedtuple

from docplex.mp.model import Model

from docplex.util.environment import get_environment

# ----------------------------------------------------------------------------

# Initialize the problem data

# ----------------------------------------------------------------------------

FOODS = [

("Roasted Chicken", 0.84, 0, 10),

("Spaghetti W/ Sauce", 0.78, 0, 10),

("Tomato,Red,Ripe,Raw", 0.27, 0, 10),

("Apple,Raw,W/Skin", .24, 0, 10),

("Grapes", 0.32, 0, 10),

("Chocolate Chip Cookies", 0.03, 0, 10),

("Lowfat Milk", 0.23, 0, 10),

("Raisin Brn", 0.34, 0, 10),

("Hotdog", 0.31, 0, 10)

]

NUTRIENTS = [

("Calories", 2000, 2500),

("Calcium", 800, 1600),

("Iron", 10, 30),

("Vit_A", 5000, 50000),

("Dietary_Fiber", 25, 100),

("Carbohydrates", 0, 300),

("Protein", 50, 100)

]

FOOD_NUTRIENTS = [

("Roasted Chicken", 277.4, 21.9, 1.8, 77.4, 0, 0, 42.2),

("Spaghetti W/ Sauce", 358.2, 80.2, 2.3, 3055.2, 11.6, 58.3, 8.2),

("Tomato,Red,Ripe,Raw", 25.8, 6.2, 0.6, 766.3, 1.4, 5.7, 1),

("Apple,Raw,W/Skin", 81.4, 9.7, 0.2, 73.1, 3.7, 21, 0.3),

("Grapes", 15.1, 3.4, 0.1, 24, 0.2, 4.1, 0.2),

("Chocolate Chip Cookies", 78.1, 6.2, 0.4, 101.8, 0, 9.3, 0.9),

("Lowfat Milk", 121.2, 296.7, 0.1, 500.2, 0, 11.7, 8.1),

("Raisin Brn", 115.1, 12.9, 16.8, 1250.2, 4, 27.9, 4),

("Hotdog", 242.1, 23.5, 2.3, 0, 0, 18, 10.4)

]

Food = namedtuple("Food", ["name", "unit_cost", "qmin", "qmax"])

Nutrient = namedtuple("Nutrient", ["name", "qmin", "qmax"])

# ----------------------------------------------------------------------------

# Build the model

# ----------------------------------------------------------------------------

def build_diet_model(**kwargs):

# Create tuples with named fields for foods and nutrients

F = [f[0] for f in FOODS]

C = {f[0]:f[1] for f in FOODS}

Fmin = {f[0]:f[2] for f in FOODS}

Fmax = {f[0]:f[3] for f in FOODS}

N = [n[0] for n in NUTRIENTS]

Nmin = {n[0]:n[1] for n in NUTRIENTS}

Nmax = {n[0]:n[2] for n in NUTRIENTS}

D = {(F[f],N[n]): FOOD_NUTRIENTS[f][n+1] for f in range(len(F)) for n in range(len(N))}

# Model

mdl = Model(name='diet', **kwargs)

# Decision variables, limited to be >= Food.qmin and <= Food.qmax

x = mdl.continuous_var_dict(F, lb=Fmin, ub=Fmax, name=F) # 2,4

# Limit range of nutrients, and mark them as KPIs

for n in N:

y = mdl.sum(x[f] * D[f, n] for f in F)

mdl.add_range(Nmin[n], y, Nmax[n]) # 3

mdl.add_kpi(y, publish_name="Total %s" % n)

for f in F:

mdl.add_kpi(x[f], publish_name="Food %s" % f)

# Minimize cost

mdl.minimize(mdl.sum(x[f] * C[f] for f in F)) # 1

return mdl

# ----------------------------------------------------------------------------

# Solve the model and display the result

# ----------------------------------------------------------------------------

if __name__ == '__main__':

mdl = build_diet_model()

mdl.print_information()

mdl.export_as_lp()

if mdl.solve():

mdl.float_precision = 3

print("* model solved as function:")

mdl.print_solution()

mdl.report_kpis()

# Save the CPLEX solution as "solution.json" program output

with get_environment().get_output_stream("diet2.json") as fp:

mdl.solution.export(fp, "json")

else:

print("* model has no solution")

擴展閱讀

Python數學規劃之Cplex之旅

Python利器

Python哲學

Python研究生

總結

以上是生活随笔為你收集整理的python minimize_Python数学规划案例一的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。