日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

神经网络学习之----Hopfield神经网络(代码实现)

發(fā)布時(shí)間:2025/3/14 编程问答 17 豆豆
生活随笔 收集整理的這篇文章主要介紹了 神经网络学习之----Hopfield神经网络(代码实现) 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

思路:

  定義三個(gè)訓(xùn)練測試圖片0 1 2(16*8),即三個(gè)吸引子。然后創(chuàng)建一個(gè)Hopfield神經(jīng)網(wǎng)絡(luò),把訓(xùn)練數(shù)據(jù)輸入。然后在用測試數(shù)據(jù)輸入測試結(jié)果。

import numpy as np import neurolab as nl import matplotlib.pyplot as plt# 0 1 2-----------16*8 target = np.array([[0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]])#畫圖函數(shù) def visualized (data, title): fig, ax = plt.subplots()ax.imshow(data, cmap=plt.cm.gray, interpolation='nearest')ax.set_title(title)plt.show()#顯示012 for i in range(len(target)):visualized(np.reshape(target[i], (16,8)), i)# In[2]:#hopfield網(wǎng)絡(luò)的值是1和-1 target[target == 0] = -1#創(chuàng)建一個(gè)hopfield神經(jīng)網(wǎng)絡(luò),吸引子為target(012) net = nl.net.newhop(target)#定義3個(gè)測試數(shù)據(jù) test_data1 =np.asfarray([0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,0,0,1,0,0,1,0,0,1,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,1,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,1,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,1,0,0,1,0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0])test_data2 =np.asfarray([0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,1,0,1,0,0,1,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,1,0,0,0,1,0,0,0,0,0,0])test_data3 =np.asfarray([0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,1,0,0,1,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0])#顯示測試數(shù)據(jù) visualized(np.reshape(test_data1, (16,8)), "test_data1") visualized(np.reshape(test_data2, (16,8)), "test_data2") visualized(np.reshape(test_data3, (16,8)), "test_data3")# In[3]: test_data1[test_data1==0] = -1 #把測試數(shù)據(jù)輸入hopfield網(wǎng)絡(luò),得到輸出 out1 = net.sim([test_data1]) #判斷測試數(shù)據(jù)的數(shù)字是多少 for i in range(len(target)):if((out1 == target[i]).all()):print("test_data is :",i) #顯示輸出 visualized(np.reshape(out1, (16,8)), "output1") test_data2[test_data2==0] = -1 #把測試數(shù)據(jù)輸入hopfield網(wǎng)絡(luò),得到輸出 out2 = net.sim([test_data2]) #判斷測試數(shù)據(jù)的數(shù)字是多少 for i in range(len(target)):if((out2 == target[i]).all()):print("test_data is :",i) #顯示輸出 visualized(np.reshape(out2, (16,8)), "output2") test_data3[test_data3==0] = -1 #把測試數(shù)據(jù)輸入hopfield網(wǎng)絡(luò),得到輸出 out3 = net.sim([test_data3]) #判斷測試數(shù)據(jù)的數(shù)字是多少 for i in range(len(target)):if((out3 == target[i]).all()):print("test_data is :",i) #顯示輸出 visualized(np.reshape(out3, (16,8)), "output3")

?

轉(zhuǎn)載于:https://www.cnblogs.com/mengqimoli/p/11103733.html

與50位技術(shù)專家面對面20年技術(shù)見證,附贈技術(shù)全景圖

總結(jié)

以上是生活随笔為你收集整理的神经网络学习之----Hopfield神经网络(代码实现)的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。