日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 运维知识 > windows >内容正文

windows

2020-11-30 离散系统自适应控制中的一个关键性引理及证明

發布時間:2025/3/15 windows 20 豆豆
生活随笔 收集整理的這篇文章主要介紹了 2020-11-30 离散系统自适应控制中的一个关键性引理及证明 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

Assumption:
the expressions are all meaningful, i.e., there exists no case that division by zero.

Proof.
If {s(t)}\{s(t)\}{s(t)} is a bounded sequence, then by (3), {∥σ(t)∥}\{\|\sigma(t)\|\}{σ(t)} is a bounded sequence. Then by (1)(1)(1) and (2)(2)(2) it follows that
lim?t→∞∥s(t)∥=0\lim _{t \rightarrow \infty} \|s(t)\|=0tlim?s(t)=0

Now assume that {∥s(t)∥}\{\|s(t)\|\}{s(t)} is unbounded. It follows that there exists a subsequence {tn}\left\{t_{n}\right\}{tn?} such that
lim?tn→∞∥s(tn)∥=∞\lim _{t_{n} \rightarrow \infty}\|s\left(t_{n}\right)\|=\infty tn?lim?s(tn?)=and
∥s(t)∥≤∥s(tn)∥for?t≤tn\|s(t)\| \leq\|s\left(t_{n}\right)\| \quad \text { for } t \leq t_{n} s(t)s(tn?)?for?ttn?
Now along the subsequence {tn}\left\{t_{n}\right\}{tn?}
[s(tn)Ts(tn)]1/2[b1(tn)+b2(tn)σ(tn)Tσ(tn)]1/2≥∥s(tn)∥[K+K∥σ(tn)∥2]1/2≥∥s(tn)∥K1/2+K1/2∥σ(tn)∥≥∥s(tn)∥K1/2+K1/2[C1+C2∥s(tn)∥]\begin{aligned} \frac{\left[s\left(t_{n}\right)^{T}s\left(t_{n}\right)\right]^{1 / 2}}{\left[b_{1}\left(t_{n}\right)+b_{2}\left(t_{n}\right) \sigma\left(t_{n}\right)^{T} \sigma\left(t_{n}\right)\right]^{1 / 2}} & \geq \frac{\left\|s\left(t_{n}\right)\right\|}{\left[K+K \| \sigma\left(t_{n}\right)\|^{2}\right]^{1 / 2}} \\ & \geq \frac{\left\|s\left(t_{n}\right)\right\|}{K^{1 / 2}+K^{1 / 2}\| \sigma\left(t_{n}\right) \|} \\ & \geq \frac{\left\|s\left(t_{n}\right)\right\|}{{K^{1 / 2}}+K^{1 / 2}\left[C_{1}+C_{2}\left\|s\left(t_{n}\right)\right\|\right]} \end{aligned} [b1?(tn?)+b2?(tn?)σ(tn?)Tσ(tn?)]1/2[s(tn?)Ts(tn?)]1/2??[K+Kσ(tn?)2]1/2s(tn?)?K1/2+K1/2σ(tn?)s(tn?)?K1/2+K1/2[C1?+C2?s(tn?)]s(tn?)??
Hence, when tnt_ntn? approaches infinity, we have
[s(tn)Ts(tn)]1/2[b1(tn)+b2(tn)σ(tn)Tσ(tn)]1/2≥1K1/2C2>0\frac{\left[s\left(t_{n}\right)^{T}s\left(t_{n}\right)\right]^{1 / 2}}{\left[b_{1}\left(t_{n}\right)+b_{2}\left(t_{n}\right) \sigma\left(t_{n}\right)^{T} \sigma\left(t_{n}\right)\right]^{1 / 2}} \geq \frac{1}{K^{1 / 2} C_{2}}>0 [b1?(tn?)+b2?(tn?)σ(tn?)Tσ(tn?)]1/2[s(tn?)Ts(tn?)]1/2?K1/2C2?1?>0
but this contradicts (1) and hence the assumption that {∥s(t)∥}\{\|s(t)\|\}{s(t)} is unbounded is false and the result follows.

The proof is complete.

總結

以上是生活随笔為你收集整理的2020-11-30 离散系统自适应控制中的一个关键性引理及证明的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。