日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

GAN论文整理

發(fā)布時(shí)間:2025/3/15 编程问答 34 豆豆
生活随笔 收集整理的這篇文章主要介紹了 GAN论文整理 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

原始GAN

Goodfellow和Bengio等人發(fā)表在NIPS 2014年的文章Generative adversary network,是生成對抗網(wǎng)絡(luò)的開創(chuàng)文章,論文思想啟發(fā)自博弈論中的二人零和博弈。在二人零和博弈中,兩位博弈方的利益之和為零或一個(gè)常數(shù),即一方有所得,另一方必有所失。GAN模型中的兩位博弈方分別由生成式模型(generative model)和判別式模型(discriminative model)充當(dāng)。生成模型G捕捉樣本數(shù)據(jù)的分布,判別模型D是一個(gè)二分類器,估計(jì)一個(gè)樣本來自于訓(xùn)練數(shù)據(jù)(而非生成數(shù)據(jù))的概率。G和D一般都是非線性映射函數(shù),例如多層感知機(jī)、卷積神經(jīng)網(wǎng)絡(luò)等。

如圖所示,左圖是一個(gè)判別式模型,當(dāng)輸入訓(xùn)練數(shù)據(jù)x時(shí),期待輸出高概率(接近1);右圖下半部分是生成模型,輸入是一些服從某一簡單分布(例如高斯分布)的隨機(jī)噪聲z,輸出是與訓(xùn)練圖像相同尺寸的生成圖像。向判別模型D輸入生成樣本,對于D來說期望輸出低概率(判斷為生成樣本),對于生成模型G來說要盡量欺騙D,使判別模型輸出高概率(誤判為真實(shí)樣本),從而形成競爭與對抗。


GAN.png

GAN優(yōu)勢很多:根據(jù)實(shí)際的結(jié)果,看上去產(chǎn)生了更好的樣本;GAN能訓(xùn)練任何一種生成器網(wǎng)絡(luò);GAN不需要設(shè)計(jì)遵循任何種類的因式分解的模型,任何生成器網(wǎng)絡(luò)和任何鑒別器都會(huì)有用;GAN無需利用馬爾科夫鏈反復(fù)采樣,無需在學(xué)習(xí)過程中進(jìn)行推斷,回避了近似計(jì)算棘手的概率的難題。

GAN主要存在的以下問題:網(wǎng)絡(luò)難以收斂,目前所有的理論都認(rèn)為GAN應(yīng)該在納什均衡上有很好的表現(xiàn),但梯度下降只有在凸函數(shù)的情況下才能保證實(shí)現(xiàn)納什均衡。

GAN發(fā)展

一方面GAN的發(fā)展很快,這里只是簡單粗略將相關(guān)論文分了幾類,歡迎反饋,持續(xù)更新。此外最近ICLR 2017 在進(jìn)行Open Review,可以關(guān)注下ICLR 2017 Conference Track,也有相應(yīng)論文筆記分享ICLR 2017 | GAN Missing Modes 和 GAN

GAN從2014年到現(xiàn)在發(fā)展很快,特別是最近ICLR 2016/2017關(guān)于GAN的論文很多,GAN現(xiàn)在有很多問題還有到解決,潛力很大。總體可以將已有的GANs論文分為以下幾類

  • GAN Theory
  • GAN in Semi-supervised
  • Muti-GAN
  • GAN with other Generative model
  • GAN with RNN
  • GAN in Application
  • GAN Theory

    此類關(guān)注與無監(jiān)督GAN本身原理的研究:比較兩個(gè)分布的距離;用DL的一些方法讓GAN快速收斂等等。相關(guān)論文有:

    • GAN: Goodfellow, Ian, et al. "Generative adversarial nets."?Advances in Neural Information Processing Systems. 2014.
    • LAPGAN: Denton, Emily L., Soumith Chintala, and Rob Fergus. "Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks."?Advances in neural information processing systems. 2015.
    • DCGAN: Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks."?arXiv preprint arXiv:1511.06434?(2015).
    • Improved GAN: Salimans, Tim, et al. "Improved techniques for training gans."?arXiv preprint arXiv:1606.03498?(2016).
    • InfoGAN: Chen, Xi, et al. "Infogan: Interpretable representation learning by information maximizing generative adversarial nets."?arXiv preprint arXiv:1606.03657(2016).**
    • EnergyGAN: Zhao, Junbo, Michael Mathieu, and Yann LeCun. "Energy-based Generative Adversarial Network."?arXiv preprint arXiv:1609.03126?(2016).
    • Creswell, Antonia, and Anil A. Bharath. "Task Specific Adversarial Cost Function."?arXiv preprint arXiv:1609.08661?(2016).
    • f-GAN: Nowozin, Sebastian, Botond Cseke, and Ryota Tomioka. "f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization."?arXiv preprint arXiv:1606.00709?(2016).
    • Unrolled Generative Adversarial Networks, ICLR 2017 Open Review
    • Improving Generative Adversarial Networks with Denoising Feature Matching, ICLR 2017 Open Review
    • Mode Regularized Generative Adversarial Networks, ICLR 2017 Open Review
    • b-GAN: Unified Framework of Generative Adversarial Networks, ICLR 2017 Open Review
    • Mohamed, Shakir, and Balaji Lakshminarayanan. "Learning in Implicit Generative Models."?arXiv preprint arXiv:1610.03483?(2016).

    GAN in Semi-supervised

    此類研究將GAN用于半監(jiān)督學(xué)習(xí),相關(guān)論文有:

    • Springenberg, Jost Tobias. "Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks."?arXiv preprint arXiv:1511.06390?(2015).
    • Odena, Augustus. "Semi-Supervised Learning with Generative Adversarial Networks."?arXiv preprint arXiv:1606.01583?(2016).

    Muti-GAN

    此類研究將多個(gè)GAN進(jìn)行組合,相關(guān)論文有:

    • CoupledGAN: Liu, Ming-Yu, and Oncel Tuzel. "Coupled Generative Adversarial Networks."?arXiv preprint arXiv:1606.07536?(2016).
    • Wang, Xiaolong, and Abhinav Gupta. "Generative Image Modeling using Style and Structure Adversarial Networks."?arXiv preprint arXiv:1603.05631(2016).
    • Generative Adversarial Parallelization, ICLR 2017 Open Review
    • LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation, ICLR 2017 Open Review

    GAN with other Generative model

    此類研究將GAN與其他生成模型組合,相關(guān)論文有:

    • Dosovitskiy, Alexey, and Thomas Brox. "Generating images with perceptual similarity metrics based on deep networks."?arXiv preprint arXiv:1602.02644(2016).
    • Larsen, Anders Boesen Lindbo, S?ren Kaae S?nderby, and Ole Winther. "Autoencoding beyond pixels using a learned similarity metric."?arXiv preprint arXiv:1512.09300?(2015).
    • Theis, Lucas, and Matthias Bethge. "Generative image modeling using spatial lstms."?Advances in Neural Information Processing Systems. 2015.

    GAN with RNN

    此類研究將GAN與RNN結(jié)合(也以參考Pixel RNN),相關(guān)論文有:

    • Im, Daniel Jiwoong, et al. "Generating images with recurrent adversarial networks."?arXiv preprint arXiv:1602.05110?(2016).
    • Kwak, Hanock, and Byoung-Tak Zhang. "Generating Images Part by Part with Composite Generative Adversarial Networks."?arXiv preprint arXiv:1607.05387?(2016).
    • Yu, Lantao, et al. "SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient."?arXiv preprint arXiv:1609.05473?(2016).

    GAN in Application

    此類研究將GAN的實(shí)際運(yùn)用(不包括圖像生成),相關(guān)論文有:

    • Zhu, Jun-Yan, et al. "Generative visual manipulation on the natural image manifold."?European Conference on Computer Vision. Springer International Publishing, 2016.
    • Creswell, Antonia, and Anil Anthony Bharath. "Adversarial Training For Sketch Retrieval."?European Conference on Computer Vision. Springer International Publishing, 2016.
    • Reed, Scott, et al. "Generative adversarial text to image synthesis."?arXiv preprint arXiv:1605.05396?(2016).
    • Ravanbakhsh, Siamak, et al. "Enabling Dark Energy Science with Deep Generative Models of Galaxy Images."?arXiv preprint arXiv:1609.05796(2016).
    • Abadi, Martín, and David G. Andersen. "Learning to Protect Communications with Adversarial Neural Cryptography."?arXiv preprint arXiv:1610.06918(2016).
    • Odena, Augustus, Christopher Olah, and Jonathon Shlens. "Conditional Image Synthesis With Auxiliary Classifier GANs."?arXiv preprint arXiv:1610.09585?(2016).
    • Ledig, Christian, et al. "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network."?arXiv preprint arXiv:1609.04802?(2016).
    • Nguyen, Anh, et al. "Synthesizing the preferred inputs for neurons in neural networks via deep generator networks."?arXiv preprint arXiv:1605.09304(2016).


    原文地址: http://www.jianshu.com/p/2acb804dd811

    與50位技術(shù)專家面對面20年技術(shù)見證,附贈(zèng)技術(shù)全景圖

    總結(jié)

    以上是生活随笔為你收集整理的GAN论文整理的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。