日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程语言 > python >内容正文

python

Python数模笔记-PuLP库(3)线性规划实例

發(fā)布時(shí)間:2025/3/15 python 37 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Python数模笔记-PuLP库(3)线性规划实例 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

本節(jié)以一個(gè)實(shí)際數(shù)學(xué)建模案例,講解 PuLP 求解線性規(guī)劃問(wèn)題的建模與編程。

1、問(wèn)題描述

某廠生產(chǎn)甲乙兩種飲料,每百箱甲飲料需用原料6千克、工人10名,獲利10萬(wàn)元;每百箱乙飲料需用原料5千克、工人20名,獲利9萬(wàn)元。
今工廠共有原料60千克、工人150名,又由于其他條件所限甲飲料產(chǎn)量不超過(guò)8百箱。
 (1)問(wèn)如何安排生產(chǎn)計(jì)劃,即兩種飲料各生產(chǎn)多少使獲利最大?
 (2)若投資0.8萬(wàn)元可增加原料1千克,是否應(yīng)作這項(xiàng)投資?投資多少合理?
 (3)若每百箱甲飲料獲利可增加1萬(wàn)元,是否應(yīng)否改變生產(chǎn)計(jì)劃?
 (4)若每百箱甲飲料獲利可增加1萬(wàn)元,若投資0.8萬(wàn)元可增加原料1千克,是否應(yīng)作這項(xiàng)投資?投資多少合理?
 (5)若不允許散箱(按整百箱生產(chǎn)),如何安排生產(chǎn)計(jì)劃,即兩種飲料各生產(chǎn)多少使獲利最大?

歡迎關(guān)注 Youcans 原創(chuàng)系列,每周更新數(shù)模筆記

Python數(shù)模筆記-PuLP庫(kù)
Python數(shù)模筆記-StatsModels統(tǒng)計(jì)回歸
Python數(shù)模筆記-Sklearn
Python數(shù)模筆記-NetworkX
Python數(shù)模筆記-模擬退火算法

2、用PuLP 庫(kù)求解線性規(guī)劃

2.1 問(wèn)題 1

(1)數(shù)學(xué)建模

問(wèn)題建模:
  決策變量:
    x1:甲飲料產(chǎn)量(單位:百箱)
    x2:乙飲料產(chǎn)量(單位:百箱)
  目標(biāo)函數(shù):
    max fx = 10*x1 + 9*x2
  約束條件:
    6*x1 + 5*x2 <= 60
    10*x1 + 20*x2 <= 150
  取值范圍:
    給定條件:x1, x2 >= 0,x1 <= 8
    推導(dǎo)條件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
    因此,0 <= x1<=8,0 <= x2<=7.5

(2)Python 編程

import pulp # 導(dǎo)入 pulp庫(kù)ProbLP1 = pulp.LpProblem("ProbLP1", sense=pulp.LpMaximize) # 定義問(wèn)題 1,求最大值x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous') # 定義 x1x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous') # 定義 x2ProbLP1 += (10*x1 + 9*x2) # 設(shè)置目標(biāo)函數(shù) f(x)ProbLP1 += (6*x1 + 5*x2 <= 60) # 不等式約束ProbLP1 += (10*x1 + 20*x2 <= 150) # 不等式約束ProbLP1.solve()print(ProbLP1.name) # 輸出求解狀態(tài)print("Status:", pulp.LpStatus[ProbLP1.status]) # 輸出求解狀態(tài)for v in ProbLP1.variables():print(v.name, "=", v.varValue) # 輸出每個(gè)變量的最優(yōu)值print("F1(x)=", pulp.value(ProbLP1.objective)) # 輸出最優(yōu)解的目標(biāo)函數(shù)值# = 關(guān)注 Youcans,分享原創(chuàng)系列 https://blog.csdn.net/youcans =

(3)運(yùn)行結(jié)果

ProbLP1 x1=6.4285714 x2=4.2857143 F1(X)=102.8571427

2.2 問(wèn)題 2

(1)數(shù)學(xué)建模

問(wèn)題建模:
  決策變量:
    x1:甲飲料產(chǎn)量(單位:百箱)
    x2:乙飲料產(chǎn)量(單位:百箱)
    x3:增加投資(單位:萬(wàn)元)
  目標(biāo)函數(shù):
    max fx = 10*x1 + 9*x2 - x3
  約束條件:
    6*x1 + 5*x2 <= 60 + x3/0.8
    10*x1 + 20*x2 <= 150
  取值范圍:
    給定條件:x1, x2 >= 0,x1 <= 8
    推導(dǎo)條件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
    因此,0 <= x1<=8,0 <= x2<=7.5

(2)Python 編程

import pulp # 導(dǎo)入 pulp庫(kù)ProbLP2 = pulp.LpProblem("ProbLP2", sense=pulp.LpMaximize) # 定義問(wèn)題 2,求最大值x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous') # 定義 x1x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous') # 定義 x2x3 = pulp.LpVariable('x3', cat='Continuous') # 定義 x3ProbLP2 += (10*x1 + 9*x2 - x3) # 設(shè)置目標(biāo)函數(shù) f(x)ProbLP2 += (6*x1 + 5*x2 - 1.25*x3 <= 60) # 不等式約束ProbLP2 += (10*x1 + 20*x2 <= 150) # 不等式約束ProbLP2.solve()print(ProbLP2.name) # 輸出求解狀態(tài)print("Status:", pulp.LpStatus[ProbLP2.status]) # 輸出求解狀態(tài)for v in ProbLP2.variables():print(v.name, "=", v.varValue) # 輸出每個(gè)變量的最優(yōu)值print("F2(x)=", pulp.value(ProbLP2.objective)) # 輸出最優(yōu)解的目標(biāo)函數(shù)值

(3)運(yùn)行結(jié)果

ProbLP2 x1=8.0 x2=3.5 x3=4.4 F2(X)=107.1

2.3 問(wèn)題 3

(1)數(shù)學(xué)建模

問(wèn)題建模:
  決策變量:
    x1:甲飲料產(chǎn)量(單位:百箱)
    x2:乙飲料產(chǎn)量(單位:百箱)
  目標(biāo)函數(shù):
    max fx = 11*x1 + 9*x2
  約束條件:
    6*x1 + 5*x2 <= 60
    10*x1 + 20*x2 <= 150
  取值范圍:
    給定條件:x1, x2 >= 0,x1 <= 8
    推導(dǎo)條件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
    因此,0 <= x1<=8,0 <= x2<=7.5

(2)Python 編程

import pulp # 導(dǎo)入 pulp庫(kù)ProbLP3 = pulp.LpProblem("ProbLP3", sense=pulp.LpMaximize) # 定義問(wèn)題 3,求最大值x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous') # 定義 x1x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous') # 定義 x2ProbLP3 += (11 * x1 + 9 * x2) # 設(shè)置目標(biāo)函數(shù) f(x)ProbLP3 += (6 * x1 + 5 * x2 <= 60) # 不等式約束ProbLP3 += (10 * x1 + 20 * x2 <= 150) # 不等式約束ProbLP3.solve()print(ProbLP3.name) # 輸出求解狀態(tài)print("Status:", pulp.LpStatus[ProbLP3.status]) # 輸出求解狀態(tài)for v in ProbLP3.variables():print(v.name, "=", v.varValue) # 輸出每個(gè)變量的最優(yōu)值print("F3(x) =", pulp.value(ProbLP3.objective)) # 輸出最優(yōu)解的目標(biāo)函數(shù)值

(3)運(yùn)行結(jié)果

ProbLP3 x1=8.0 x2=2.4 F3(X) = 109.6

2.4 問(wèn)題 4

(1)數(shù)學(xué)建模

問(wèn)題建模:
  決策變量:
    x1:甲飲料產(chǎn)量(單位:百箱)
    x2:乙飲料產(chǎn)量(單位:百箱)
    x3:增加投資(單位:萬(wàn)元)
  目標(biāo)函數(shù):
    max fx = 11*x1 + 9*x2 - x3
  約束條件:
    6*x1 + 5*x2 <= 60 + x3/0.8
    10*x1 + 20*x2 <= 150
  取值范圍:
    給定條件:x1, x2 >= 0,x1 <= 8
    推導(dǎo)條件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
    因此,0 <= x1<=8,0 <= x2<=7.5

(2)Python 編程

import pulp # 導(dǎo)入 pulp庫(kù) ProbLP4 = pulp.LpProblem("ProbLP4", sense=pulp.LpMaximize) # 定義問(wèn)題 2,求最大值x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous') # 定義 x1x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous') # 定義 x2x3 = pulp.LpVariable('x3', cat='Continuous') # 定義 x3ProbLP4 += (11 * x1 + 9 * x2 - x3) # 設(shè)置目標(biāo)函數(shù) f(x)ProbLP4 += (6 * x1 + 5 * x2 - 1.25 * x3 <= 60) # 不等式約束ProbLP4 += (10 * x1 + 20 * x2 <= 150) # 不等式約束ProbLP4.solve()print(ProbLP4.name) # 輸出求解狀態(tài)print("Status:", pulp.LpStatus[ProbLP4.status]) # 輸出求解狀態(tài)for v in ProbLP4.variables():print(v.name, "=", v.varValue) # 輸出每個(gè)變量的最優(yōu)值print("F4(x) = ", pulp.value(ProbLP4.objective)) # 輸出最優(yōu)解的目標(biāo)函數(shù)值# = 關(guān)注 Youcans,分享原創(chuàng)系列 https://blog.csdn.net/youcans =

(3)運(yùn)行結(jié)果

ProbLP4 x1=8.0 x2=3.5 x3=4.4 F4(X) = 115.1

2.5 問(wèn)題 5:整數(shù)規(guī)劃問(wèn)題

(1)數(shù)學(xué)建模

問(wèn)題建模:
  決策變量:
    x1:甲飲料產(chǎn)量,正整數(shù)(單位:百箱)
    x2:乙飲料產(chǎn)量,正整數(shù)(單位:百箱)
  目標(biāo)函數(shù):
    max fx = 10*x1 + 9*x2
  約束條件:
    6*x1 + 5*x2 <= 60
    10*x1 + 20*x2 <= 150
  取值范圍:
    給定條件:x1, x2 >= 0,x1 <= 8,x1, x2 為整數(shù)
    推導(dǎo)條件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
    因此,0 <= x1<=8,0 <= x2<=7

說(shuō)明:本題中要求飲料車輛為整百箱,即決策變量 x1,x2 為整數(shù),因此是整數(shù)規(guī)劃問(wèn)題。PuLP提供了整數(shù)規(guī)劃的

(2)Python 編程

import pulp # 導(dǎo)入 pulp庫(kù)ProbLP5 = pulp.LpProblem("ProbLP5", sense=pulp.LpMaximize) # 定義問(wèn)題 1,求最大值x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Integer') # 定義 x1,變量類型:整數(shù)x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Integer') # 定義 x2,變量類型:整數(shù)ProbLP5 += (10 * x1 + 9 * x2) # 設(shè)置目標(biāo)函數(shù) f(x)ProbLP5 += (6 * x1 + 5 * x2 <= 60) # 不等式約束ProbLP5 += (10 * x1 + 20 * x2 <= 150) # 不等式約束ProbLP5.solve()print(ProbLP5.name) # 輸出求解狀態(tài)print("Status:", pulp.LpStatus[ProbLP5.status]) # 輸出求解狀態(tài)for v in ProbLP5.variables():print(v.name, "=", v.varValue) # 輸出每個(gè)變量的最優(yōu)值print("F5(x) =", pulp.value(ProbLP5.objective)) # 輸出最優(yōu)解的目標(biāo)函數(shù)值

(3)運(yùn)行結(jié)果

ProbLP5 x1=8.0 x2=2.0 F5(X) = 98.0

版權(quán)說(shuō)明:
YouCans 原創(chuàng)作品
Copyright 2021 YouCans, XUPT
Crated:2021-04-28


關(guān)注 Youcans,分享原創(chuàng)系列 https://blog.csdn.net/youcans

Python數(shù)模筆記-PuLP庫(kù)(1)線性規(guī)劃入門
Python數(shù)模筆記-PuLP庫(kù)(2)線性規(guī)劃進(jìn)階
Python數(shù)模筆記-PuLP庫(kù)(3)線性規(guī)劃實(shí)例
Python數(shù)模筆記-StatsModels 統(tǒng)計(jì)回歸(1)簡(jiǎn)介
Python數(shù)模筆記-StatsModels 統(tǒng)計(jì)回歸(2)線性回歸
Python數(shù)模筆記-StatsModels 統(tǒng)計(jì)回歸(3)模型數(shù)據(jù)的準(zhǔn)備
Python數(shù)模筆記-StatsModels 統(tǒng)計(jì)回歸(4)可視化
Python數(shù)模筆記-Sklearn (1)介紹
Python數(shù)模筆記-Sklearn (2)聚類分析
Python數(shù)模筆記-Sklearn (3)主成分分析
Python數(shù)模筆記-Sklearn (4)線性回歸
Python數(shù)模筆記-Sklearn (5)支持向量機(jī)
Python數(shù)模筆記-模擬退火算法(1)多變量函數(shù)優(yōu)化
Python數(shù)模筆記-模擬退火算法(2)約束條件的處理
Python數(shù)模筆記-模擬退火算法(3)整數(shù)規(guī)劃問(wèn)題
Python數(shù)模筆記-模擬退火算法(4)旅行商問(wèn)題

總結(jié)

以上是生活随笔為你收集整理的Python数模笔记-PuLP库(3)线性规划实例的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。