日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 运维知识 > 数据库 >内容正文

数据库

mysql loose_简单谈谈MySQL的loose index scan

發布時間:2025/3/15 数据库 18 豆豆
生活随笔 收集整理的這篇文章主要介紹了 mysql loose_简单谈谈MySQL的loose index scan 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

眾所周知,InnoDB采用IOT(index organization table)即所謂的索引組織表,而葉子節點也就存放了所有的數據,這就意味著,數據總是按照某種順序存儲的。所以問題來了,如果是這樣一個語句,執行起來應該是怎么樣的呢?語句如下:

select count(distinct a) from table1;

列a上有一個索引,那么按照簡單的想法來講,如何掃描呢?很簡單,一條一條的掃描,這樣一來,其實做了一次索引全掃描,效率很差。這種掃描方式會掃描到很多很多的重復的索引,這樣說的話優化的辦法也是很容易想到的:跳過重復的索引就可以了。于是網上能搜到這樣的一個優化的辦法:

select count(*) from (select distinct a from table1) t;

從已經搜索到的資料看,這樣的執行計劃中的extra就從using index變成了using index for group-by。

但是,但是,但是,好在我們現在已經沒有使用5.1的版本了,大家基本上都是5.5以上了,這些現代版本,已經實現了loose index scan:

很好很好,就不需要再用這種奇技淫巧去優化SQL了。

文檔里關于group by這里寫的有點意思,說是最大眾化的辦法就是進行全表掃描并且創建一個臨時表,這樣執行計劃就會難看的要命了,肯定有ALL和using temporary table了。

5.0之后group by在特定條件下可能使用到loose index scan,

CREATE TABLE log_table (

id INT NOT NULL PRIMARY KEY,

log_machine VARCHAR(20) NOT NULL,

log_time DATETIME NOT NULL

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

CREATE INDEX ix_log_machine_time ON log_table (log_machine, log_time);

1

SELECT MAX(log_time) FROM log_table;

SELECT MAX(log_time) FROM log_table WHERE log_machine IN ('Machine 1');

這兩條sql都只需一次index seek便可返回,源于索引的有序排序,優化器意識到min/max位于最左/右塊,從而避免范圍掃描;

extra顯示Select tables optimized away ;

2

SELECT MAX(log_time) FROM log_table WHERE log_machine IN (‘Machine 1','Machine 2','Machine 3','Machine 4');

執行計劃type 為range(extra顯示using where; using index),即執行索引范圍掃描,先讀取所有滿足log_machine約束的記錄,然后對其遍歷找出max value;

改進

SELECT MAX(log_time) FROM log_table WHERE log_machine IN (‘Machine 1','Machine 2','Machine 3','Machine 4')? group by log_machine order by 1 desc limit 1;

這滿足group by選擇loose index scan的要求,執行計劃的extra顯示using index for group-by,執行效果等值于

SELECT MAX(log_time) FROM log_table WHERE log_machine IN (‘Machine 1')

Union

SELECT MAX(log_time) FROM log_table WHERE log_machine IN (‘Machine 2')

…..

即對每個log_machine執行loose index scan,rows從原來的82636下降為16(該表總共1,000,000條記錄)。

Group by何時使用loose index scan?

適用條件:

1? 針對單表操作

2? Group by使用索引的最左前綴列

3? 只支持聚集函數min()/max()

4? Where條件出現的列必須為=constant操作 , 沒出現在group by中的索引列必須使用constant

5? 不支持前綴索引,即部分列索引 ,如index(c1(10))

執行計劃的extra應該顯示using index for group-by

假定表t1有個索引idx(c1,c2,c3)

SELECT c1, c2 FROM t1 GROUP BY c1, c2;

SELECT DISTINCT c1, c2 FROM t1;

SELECT c1, MIN(c2) FROM t1 GROUP BY c1;

SELECT c1, c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;

SELECT MAX(c3), MIN(c3), c1, c2 FROM t1 WHERE c2 > const GROUP BY c1, c2;

SELECT c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;

SELECT c1, c2 FROM t1 WHERE c3 = const GROUP BY c1, c2

SELECT c1, c3 FROM t1 GROUP BY c1, c2;--無法使用松散索引

而SELECT c1, c3 FROM t1? where c3= const GROUP BY c1, c2;則可以

緊湊索引掃描tight index scan

Group by在無法使用loose index scan,還可以選擇tight,若兩者都不可選,則只能借助臨時表;

掃描索引時,須讀取所有滿足條件的索引鍵,要么是全索引掃描,要么是范圍索引掃描;

Group by的索引列不連續;或者不是從最左前綴開始,但是where條件里出現最左列;

SELECT c1, c2, c3 FROM t1 WHERE c2 = 'a' GROUP BY c1, c3;

SELECT c1, c2, c3 FROM t1 WHERE c1 = 'a' GROUP BY c2, c3;

5.6的改進

事實上,5.6的index condition push down可以彌補loose index scan缺失帶來的性能損失。

KEY(age,zip)

mysql> explain SELECT name FROM people WHERE age BETWEEN 18 AND 20 AND zip IN (12345,12346, 12347);

+----+-------------+--------+-------+---------------+------+---------+------+-------+-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+--------+-------+---------------+------+---------+------+-------+-------------+

| 1 | SIMPLE | people | range | age | age | 4 | NULL | 90556 | Using where |

+----+-------------+--------+-------+---------------+------+---------+------+-------+-------------+

1 row in set (0.01 sec)

根據key_len=4可以推測出sql只用到索引的第一列,即先通過索引查出滿足age (18,20)的行記錄,然后從server層篩選出滿足zip約束的行;

pre-5.6,對于復合索引,只有當引導列使用"="時才有機會在索引掃描時使用到后面的索引列。

mysql> explain SELECT name FROM people WHERE age=18 AND zip IN (12345,12346, 12347);

+----+-------------+--------+-------+---------------+------+---------+------+------+-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+--------+-------+---------------+------+---------+------+------+-------------+

| 1 | SIMPLE | people | range | age | age | 8 | NULL | 3 | Using where |

+----+-------------+--------+-------+---------------+------+---------+------+------+-------------+

1 row in set (0.00 sec)

對比一下查詢效率

mysql> SELECT sql_no_cache name FROM people WHERE age=19 AND zip IN (12345,12346, 12347);

+----------------------------------+

| name |

+----------------------------------+

| 888ba838661aff00bbbce114a2a22423 |

+----------------------------------+

1 row in set (0.06 sec)

mysql> SELECT SQL_NO_CACHE name FROM people WHERE age BETWEEN 18 AND 22 AND zip IN (12345,12346, 12347);

+----------------------------------+

| name |

+----------------------------------+

| ed4481336eb9adca222fd404fa15658e |

| 888ba838661aff00bbbce114a2a22423 |

+----------------------------------+

2 rows in set (1 min 56.09 sec)

對于第二條sql,可以使用union改寫,

mysql> SELECT name FROM people WHERE age=18 AND zip IN (12345,12346, 12347)

-> UNION ALL

-> SELECT name FROM people WHERE age=19 AND zip IN (12345,12346, 12347)

-> UNION ALL

-> SELECT name FROM people WHERE age=20 AND zip IN (12345,12346, 12347)

-> UNION ALL

-> SELECT name FROM people WHERE age=21 AND zip IN (12345,12346, 12347)

-> UNION ALL

-> SELECT name FROM people WHERE age=22 AND zip IN (12345,12346, 12347);

而mysql5.6引入了index condition pushdown,從優化器層面解決了此類問題。

總結

以上是生活随笔為你收集整理的mysql loose_简单谈谈MySQL的loose index scan的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。