日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程语言 > python >内容正文

python

[云炬python3玩转机器学习]4-3 训练数据集,测试数据集

發(fā)布時(shí)間:2025/3/15 python 35 豆豆
生活随笔 收集整理的這篇文章主要介紹了 [云炬python3玩转机器学习]4-3 训练数据集,测试数据集 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

03 測(cè)試我們的算法

?

import numpy as np import matplotlib.pyplot as plt from sklearn import datasets iris = datasets.load_iris() iris.keys() dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names']) X = iris.data y = iris.target X.shape (150, 4) y.shape (150,)

train_test_split

分離出一部分?jǐn)?shù)據(jù)做訓(xùn)練,另外一部分?jǐn)?shù)據(jù)做測(cè)試。

y array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]) shuffled_indexes = np.random.permutation(len(X)) shuffled_indexes array([ 69, 11, 5, 9, 12, 148, 111, 34, 73, 104, 108, 47, 60,102, 95, 75, 139, 110, 55, 77, 49, 6, 92, 32, 124, 21,127, 130, 66, 58, 63, 0, 80, 144, 97, 1, 8, 79, 123,101, 50, 23, 90, 56, 19, 149, 142, 57, 72, 147, 86, 145,15, 91, 4, 62, 41, 39, 135, 112, 115, 38, 138, 33, 125,134, 35, 87, 26, 114, 61, 143, 103, 43, 82, 140, 141, 30,78, 146, 10, 22, 51, 122, 18, 31, 113, 131, 129, 7, 65,59, 36, 85, 81, 28, 116, 118, 83, 67, 52, 109, 119, 16,25, 2, 136, 94, 93, 45, 132, 76, 71, 99, 54, 20, 96,3, 117, 64, 128, 120, 48, 46, 13, 126, 88, 53, 68, 107,121, 40, 29, 133, 89, 44, 42, 98, 137, 17, 100, 84, 24,27, 74, 106, 37, 14, 70, 105]) test_ratio = 0.2 test_size = int(len(X) * test_ratio) test_indexes = shuffled_indexes[:test_size] train_indexes = shuffled_indexes[test_size:] X_train = X[train_indexes] y_train = y[train_indexes]X_test = X[test_indexes] y_test = y[test_indexes] print(X_train.shape) print(y_train.shape) (120, 4) (120,) print(X_test.shape) print(y_test.shape) (30, 4) (30,)

封裝

from playML.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(X, y) print(X_train.shape) print(y_train.shape) (120, 4) (120,) print(X_test.shape) print(y_test.shape) (30, 4) (30,)

測(cè)試我們的算法

from playML.kNN import KNNClassifiermy_knn_clf = KNNClassifier(k=3) my_knn_clf.fit(X_train, y_train) y_predict = my_knn_clf.predict(X_test) y_predict array([2, 1, 0, 0, 0, 0, 1, 1, 2, 2, 0, 0, 0, 2, 2, 0, 1, 2, 1, 1, 0, 1, 0,1, 1, 2, 2, 0, 0, 1]) y_test array([2, 1, 0, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 2, 2, 0, 1, 2, 1, 1, 0, 1, 0,1, 1, 2, 2, 0, 0, 1]) sum(y_predict == y_test) 29 sum(y_predict == y_test) / len(y_test) 0.96666666666666667

sklearn中的train_test_split

from sklearn.model_selection import train_test_splittrain_test_split <function sklearn.model_selection._split.train_test_split> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=666) print(X_train.shape) print(y_train.shape) (120, 4) (120,) print(X_test.shape) print(y_test.shape) (30, 4) (30,)

總結(jié)

以上是生活随笔為你收集整理的[云炬python3玩转机器学习]4-3 训练数据集,测试数据集的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。