日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

【笔记】An explainable deep machine vision framework for plant stress phenotyping

發布時間:2025/3/15 编程问答 27 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【笔记】An explainable deep machine vision framework for plant stress phenotyping 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

《An explainable deep machine vision framework for plant stress phenotyping》

背景

目前基于視覺癥狀的植物脅迫,由于其癥狀相似,主要是靠專家人工識別。但是人工過程繁瑣,識別結果因人而異。

創新點

構建可解釋的神經網絡模型,實現植物脅迫的識別、分類和量化。并且解釋哪些視覺特征用于病蟲害的檢測。

數據獲取

照片數量

每種病害單張葉片2000張左右,包括正常葉片總共16207張,數據增強到65760張。

模型構建

模型解釋



通過模型生成的卷積特征結合TOP-K算法生成特征圖,與人工標記的葉片脅迫區域做空間相關性分析,驗證特征圖的“可信度”,借助視覺感官來解釋卷積神經網絡所產生的特征是如何用來脅迫識別和分類的。

脅迫程度等級預測:

對健康葉片計算其卷積層激活水平,以此為基準,計算各脅迫的激活水平,與其做比值,產生相應的脅迫等級標準。

猜你喜歡:👇🏻
?【筆記】基于 Mask R-CNN 的玉米田間雜草檢測方法

與50位技術專家面對面20年技術見證,附贈技術全景圖

總結

以上是生活随笔為你收集整理的【笔记】An explainable deep machine vision framework for plant stress phenotyping的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。