日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Adonis结果P值小于0.05,一定代表两组样品物种构成差异显著吗?

發布時間:2025/3/15 编程问答 29 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Adonis结果P值小于0.05,一定代表两组样品物种构成差异显著吗? 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

前情回顧

方差分析基本概念:方差分析中的“元”和“因素”是什么?

PERMANOVA原理解釋:這個統計檢驗可用于判斷PCA/PCoA等的分群效果是否顯著!

實戰1:畫一個帶統計檢驗的PCoA分析結果

配對檢驗:畫一個帶統計檢驗的PcOA分析結果 (再進一步,配對比較)

你的adonis用對了嗎?不同因素的順序竟然對結果有很大影響

為PERMANOVA/Adonis分析保駕護航,檢驗數據離散度

非參數檢驗也不是什么都不需要關注,比如上面提到的因素順序和方差加和方式是一個需要注意的點。除此之外,非參數多元方差分析應用時還有下面這些注意事項:

  • PERMANOVA檢驗沒有考慮變量之間的共線性關系,因此也不能夠用于探索這種關系。

  • 嵌套或分層設計 (Nested or hierarchical designs)時需要考慮合適的置換策略。

    需要明確哪些樣品是真正可以交換的 (exchangeable)。

  • PERMANOVA有個假設是balanced designs (不同分組的樣本數相等), 非平衡設計也能處理。

  • 如果不同組的樣品在檢測指標構成的空間的中心點沒有差別,但每個組內檢測指標離散度較大,也會導致獲得顯著性的P值。

    在解釋結果時,需要同時評估數據離散度的影響。

  • vegdist評估數據離散度,再解釋adonis的結果

    前面我們用下面的代碼檢驗了Managment對物種組成差異影響的顯著程度,獲得P-value=0.002 < 0.05,表示管理方式對物種組成有顯著影響。但這一影響是否受到每個分組里面數據離散程度的影響呢?

    library(vegan) data(dune) data(dune.env) # 基于bray-curtis距離進行計算 set.seed(1) dune.div <- adonis2(dune ~ Management, data = dune.env, permutations = 999, method="bray")dune.div## Permutation test for adonis under reduced model ## Terms added sequentially (first to last) ## Permutation: free ## Number of permutations: 999 ## ## adonis2(formula = dune ~ Management, data = dune.env, permutations = 999, method = "bray") ## Df SumOfSqs R2 F Pr(>F) ## Management 3 1.4686 0.34161 2.7672 0.002 ** ## Residual 16 2.8304 0.65839 ## Total 19 4.2990 1.00000 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

    我們還需要利用betadisper評估下每組樣本物種組成的多元一致性 (Multivariate homogeneity of groups dispersions (variances))。如下代碼計算出P=0.168表示不同分組樣品檢測指標的離散度(方差)沒有顯著差異。那么,adonis檢測出的差異就是因為每組數據在空間的中心點不同造成的,進一步說明Management對物種組成有顯著影響。

    # 計算加權bray-curtis距離 dune.dist <- vegdist(dune, method="bray", binary=F)# One measure of multivariate dispersion (variance) for a group of samples # is to calculate the average distance of group members to the group centroid # or spatial median in multivariate space. # To test if the dispersions (variances) of one or more groups are different, # the distances of group members to the group centroid are subject to ANOVA. # This is a multivariate analogue of Levene's test for homogeneity of variances # if the distances between group members and # group centroids is the Euclidean distance. dispersion <- betadisper(dune.dist, group=dune.env$Management) permutest(dispersion)## ## Permutation test for homogeneity of multivariate dispersions ## Permutation: free ## Number of permutations: 999 ## ## Response: Distances ## Df Sum Sq Mean Sq F N.Perm Pr(>F) ## Groups 3 0.13831 0.046104 1.9506 999 0.159 ## Residuals 16 0.37816 0.023635

    從下面的圖上也可以看出,4種管理方式下樣品在空間的中心點相距較遠。(也可以參考前面如何美化這個圖)

    plot(dispersion, hull=FALSE, ellipse=TRUE) ##sd ellipse

    Q: When running adonis (vegan package) I got an r2 = 0.45, andp = 0.001. When I ran the betadisper and ran a subsequent permutation test I got an F = 1 and p = 0.3.

    A: A non-significant result in betadisper is not necessarily related to a significant/non-significant result in adonis. The two tests are testing different hypothesis. The former testshomogeneity of dispersion among groups (regions in your case), which is a condition (assumption) for adonis. The latter tests no difference in ‘location’, that is, tests whether composition among groups is similar or not. You may have the centroids of two groups in NMS at a very similar position in the ordination space, but if theirdispersions are quite different, adonis will give you a significant p-value, thus, the result is heavily influenced not by thedifference in composition between groups but bydifferences in composition within groups (heterogeneous dispersion, and thus a measure of beta diversity). In short, your results are fine, you are meeting the ‘one assumption’ for adonis (homogeneous dispersion) and thus you are certain that results from adonis are ‘real’ and not an artifact of heterogeneous dispersions. For more information you can read Anderson (2006) Biometrics 62(1):245-253 and Anderson (2006) Ecology Letters 9(6):683-693. Hope this helps!

    https://stats.stackexchange.com/questions/212137/betadisper-and-adonis-in-r-am-i-interpreting-my-output-correctly

    數據離散度不同而中心點一致,adonis也可能顯著

    下面我們看一個模擬的例子,模擬出3套群體的物種豐度表,群體1、群體2、群體3的物種空間的中心點一致,而物種豐度的離散度依次變小,PERMANOVA檢驗顯著,betadisper結果也顯著,這時解釋數據時就要小心。這個導致顯著的原因是什么。

    set.seed(1) num <- 30 # 控制每個物種的均值 mean <- seq(10,120,by=10) # 控制離散度 disp <- c(5,50,200)# 模擬3組樣品的數據;直接是轉置后的物種豐度表 sites.a <- as.data.frame(mapply(rnbinom, n=num, size=disp[1], mu=mean)) rownames(sites.a) <- paste('site.a', 1:num, sep=".") colnames(sites.a) <- paste('Species',letters[1:length(mean)], sep=".")sites.b <- as.data.frame(mapply(rnbinom, n=num, size=disp[1:2], mu=mean)) rownames(sites.b) <- paste('site.b', 1:num, sep=".") colnames(sites.b) <- paste('Species',letters[1:length(mean)], sep=".")sites.c <- as.data.frame(mapply(rnbinom, n=num, size=disp, mu=mean)) rownames(sites.c) <- paste('site.c', 1:num, sep=".") colnames(sites.c) <- paste('Species',letters[1:length(mean)], sep=".")otu_table_t <- rbind(sites.a,sites.b,sites.c) otu_table_t[sample(1:90,5),]## Species.a Species.b Species.c Species.d Species.e Species.f Species.g Species.h Species.i Species.j ## site.c.22 13 15 43 29 49 72 24 102 75 96 ## site.a.26 8 23 46 29 25 15 91 49 58 54 ## site.a.13 14 30 47 56 18 77 111 128 90 53 ## site.a.14 5 15 17 56 37 75 81 59 63 58 ## site.b.21 15 24 8 33 28 42 108 74 76 64 ## Species.k Species.l ## site.c.22 139 142 ## site.a.26 87 129 ## site.a.13 33 47 ## site.a.14 164 183 ## site.b.21 52 103

    生成Metadata數據,包含樣品的分組信息。目的就是檢驗不同組的物種構成是否有顯著差異。

    metadata <- data.frame(Sample=rownames(otu_table_t), Group=rep(c("A","B","C"), each=num)) rownames(metadata) <- metadata$Sample metadata[sample(1:90,5),,drop=F]## Sample Group ## site.a.28 site.a.28 A ## site.b.12 site.b.12 B ## site.a.20 site.a.20 A ## site.b.10 site.b.10 B ## site.a.10 site.a.10 A

    PCoA和NMDS分析可視化不同組樣品物種組成的差異度

    統計分析前,先直觀的看一下不同組樣本在物種定義的空間上的分布。

    為什么要畫個圖:參考 - 什么是安斯庫姆四重奏?為什么統計分析之前必須要作圖?

    # 計算加權bray-curtis距離 otu_dist <- vegdist(otu_table_t, method="bray", binary=F)otu_pcoa <- cmdscale(otu_dist, k=3, eig=T)otu_pcoa_points <- as.data.frame(otu_pcoa$points) sum_eig <- sum(otu_pcoa$eig) eig_percent <- round(otu_pcoa$eig/sum_eig*100,1)colnames(otu_pcoa_points) <- paste0("PCoA", 1:3)otu_pcoa_result <- cbind(otu_pcoa_points, metadata)

    從PCoA的結果上來看,A,B,C三個組在第一、第二、第三主坐標軸沒有明顯的區分開。

    library(ggplot2) library(patchwork)ggplot(otu_pcoa_result, aes(x=PCoA1, y=PCoA2, color=Group)) +labs(x=paste("PCoA 1 (", eig_percent[1], "%)", sep=""),y=paste("PCoA 2 (", eig_percent[2], "%)", sep="")) +geom_point(size=4) + stat_ellipse(level=0.9) +theme_classic() + coord_fixed() +ggplot(otu_pcoa_result, aes(x=PCoA1, y=PCoA3, color=Group)) +labs(x=paste("PCoA 1 (", eig_percent[1], "%)", sep=""),y=paste("PCoA 3 (", eig_percent[3], "%)", sep="")) +geom_point(size=4) + stat_ellipse(level=0.9) +theme_classic() + coord_fixed()

    從NMDS結果看,A,B,C三組也區分不開。

    otu_mds <- metaMDS(otu_table_t, k=5) #using all the defaults## Square root transformation ## Wisconsin double standardization ## Run 0 stress 0.1131245 ## Run 1 stress 0.1131233 ## ... New best solution ## ... Procrustes: rmse 0.0003155417 max resid 0.001341899 ## ... Similar to previous best ## Run 2 stress 0.1131243 ## ... Procrustes: rmse 0.0009154324 max resid 0.00352237 ## ... Similar to previous best ## Run 3 stress 0.1131238 ## ... Procrustes: rmse 0.0002307456 max resid 0.001378836 ## ... Similar to previous best ## Run 4 stress 0.1131239 ## ... Procrustes: rmse 0.0002008885 max resid 0.0008441584 ## ... Similar to previous best ## Run 5 stress 0.1131233 ## ... Procrustes: rmse 0.0004594988 max resid 0.00248363 ## ... Similar to previous best ## Run 6 stress 0.1136538 ## Run 7 stress 0.1131231 ## ... New best solution ## ... Procrustes: rmse 6.187922e-05 max resid 0.0002788433 ## ... Similar to previous best ## Run 8 stress 0.1131234 ## ... Procrustes: rmse 0.000457399 max resid 0.002017475 ## ... Similar to previous best ## Run 9 stress 0.1131243 ## ... Procrustes: rmse 0.0003620819 max resid 0.001329571 ## ... Similar to previous best ## Run 10 stress 0.1131235 ## ... Procrustes: rmse 0.0001788438 max resid 0.0008840311 ## ... Similar to previous best ## Run 11 stress 0.1131248 ## ... Procrustes: rmse 0.0004674201 max resid 0.001960981 ## ... Similar to previous best ## Run 12 stress 0.1131231 ## ... New best solution ## ... Procrustes: rmse 0.0003807188 max resid 0.001578129 ## ... Similar to previous best ## Run 13 stress 0.1131238 ## ... Procrustes: rmse 0.0004016239 max resid 0.002178598 ## ... Similar to previous best ## Run 14 stress 0.113123 ## ... New best solution ## ... Procrustes: rmse 0.0001931854 max resid 0.0007886561 ## ... Similar to previous best ## Run 15 stress 0.1176584 ## Run 16 stress 0.1131244 ## ... Procrustes: rmse 0.000621146 max resid 0.002339344 ## ... Similar to previous best ## Run 17 stress 0.1131237 ## ... Procrustes: rmse 0.0004553297 max resid 0.0019548 ## ... Similar to previous best ## Run 18 stress 0.1131236 ## ... Procrustes: rmse 0.000454603 max resid 0.001894929 ## ... Similar to previous best ## Run 19 stress 0.1131241 ## ... Procrustes: rmse 0.0005855289 max resid 0.002455173 ## ... Similar to previous best ## Run 20 stress 0.113124 ## ... Procrustes: rmse 0.0005247607 max resid 0.001899271 ## ... Similar to previous best ## *** Solution reachedotu_mds_scores <- as.data.frame(scores(otu_mds)) otu_mds_scores <- cbind(otu_mds_scores, metadata)library(ggplot2) ggplot(data=otu_mds_scores, aes(x=NMDS1,y=NMDS2,colour=Group)) + geom_point(size=4) + stat_ellipse(level = 0.9) +theme_classic()

    進行Adonis檢驗和數據離散度評估

    adonis結果顯示Pr(>F)<0.05,統計顯著;不同組之間的物種組成存在顯著差異。這與PCoA和NMDS的結果還是有些不一致的。那這個統計差異是怎么來的呢?

    library(vegan) adon.results<-adonis(otu_dist ~ Group, data=metadata, perm=999) print(adon.results)## ## Call: ## adonis(formula = otu_dist ~ Group, data = metadata, permutations = 999) ## ## Permutation: free ## Number of permutations: 999 ## ## Terms added sequentially (first to last) ## ## Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) ## Group 2 0.10752 0.053760 2.4707 0.05375 0.001 *** ## Residuals 87 1.89300 0.021759 0.94625 ## Total 89 2.00052 1.00000 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

    betadisper檢驗Pr(>F)<0.05表明不同組的數據在空間分布的離散度顯著不同。這是導致adonis結果顯著的主要原因。不同分組之間物種的構成的顯著不同不是體現在物種空間中心點的變化,而是物種空間離散度的變化。

    mod <- betadisper(otu_dist, metadata$Group) permutest(mod)## ## Permutation test for homogeneity of multivariate dispersions ## Permutation: free ## Number of permutations: 999 ## ## Response: Distances ## Df Sum Sq Mean Sq F N.Perm Pr(>F) ## Groups 2 0.157498 0.078749 80.188 999 0.001 *** ## Residuals 87 0.085439 0.000982 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

    用一組可視化來展示這個差異的成因

    把每組樣本抽提出來,分別繪制下PCoA的樣品分布,可以看出,每組樣品在PCoA定義的空間上中心點是很相近的,而樣品分散程度不同。也就是說分組內樣品的多樣性反應到了不同分組的物種構成差異上了,這個“顯著”的差異是不是我們關注的,需要自己來判斷了。

    # extract the centroids and the site points in multivariate space. centroids<-data.frame(grps=rownames(mod$centroids),data.frame(mod$centroids)) vectors<-data.frame(group=mod$group,data.frame(mod$vectors))# to create the lines from the centroids to each point we will put it in a format that ggplot can handle seg.data<-cbind(vectors[,1:3],centroids[rep(1:nrow(centroids),as.data.frame(table(vectors$group))$Freq),2:3]) names(seg.data)<-c("group","v.PCoA1","v.PCoA2","PCoA1","PCoA2")# create the convex hulls of the outermost points grp1.hull<-seg.data[seg.data$group=="A",1:3][chull(seg.data[seg.data$group=="A",2:3]),] grp2.hull<-seg.data[seg.data$group=="B",1:3][chull(seg.data[seg.data$group=="B",2:3]),] grp3.hull<-seg.data[seg.data$group=="C",1:3][chull(seg.data[seg.data$group=="C",2:3]),] all.hull<-rbind(grp1.hull,grp2.hull,grp3.hull)library(gridExtra)panel.a<-ggplot() +geom_polygon(data=all.hull[all.hull=="A",],aes(x=v.PCoA1,y=v.PCoA2),colour="black",alpha=0,linetype="dashed") +geom_segment(data=seg.data[1:30,],aes(x=v.PCoA1,xend=PCoA1,y=v.PCoA2,yend=PCoA2),alpha=0.30) + geom_point(data=centroids[1,1:3], aes(x=PCoA1,y=PCoA2),size=4,colour="red",shape=16) + geom_point(data=seg.data[1:30,], aes(x=v.PCoA1,y=v.PCoA2),size=2,shape=16) +labs(title="A",x="",y="") +coord_cartesian(xlim = c(-0.2,0.2), ylim = c(-0.25,0.2)) +theme_classic() + theme(legend.position="none")panel.b<-ggplot() + geom_polygon(data=all.hull[all.hull=="B",],aes(x=v.PCoA1,y=v.PCoA2),colour="black",alpha=0,linetype="dashed") +geom_segment(data=seg.data[31:60,],aes(x=v.PCoA1,xend=PCoA1,y=v.PCoA2,yend=PCoA2),alpha=0.30) + geom_point(data=centroids[2,1:3], aes(x=PCoA1,y=PCoA2),size=4,colour="red",shape=17) + geom_point(data=seg.data[31:60,], aes(x=v.PCoA1,y=v.PCoA2),size=2,shape=17) +labs(title="B",x="",y="") +coord_cartesian(xlim = c(-0.2,0.2), ylim = c(-0.25,0.2)) +theme_classic() + theme(legend.position="none")panel.c<-ggplot() + geom_polygon(data=all.hull[all.hull=="C",],aes(x=v.PCoA1,y=v.PCoA2),colour="black",alpha=0,linetype="dashed") +geom_segment(data=seg.data[61:90,],aes(x=v.PCoA1,xend=PCoA1,y=v.PCoA2,yend=PCoA2),alpha=0.30) +geom_point(data=centroids[3,1:3], aes(x=PCoA1,y=PCoA2),size=4,colour="red",shape=15) + geom_point(data=seg.data[61:90,], aes(x=v.PCoA1,y=v.PCoA2),size=2,shape=15) + labs(title="C",x="",y="") +coord_cartesian(xlim = c(-0.2,0.2), ylim = c(-0.25,0.2)) +theme_classic() + theme(legend.position="none")panel.d<-ggplot() + geom_polygon(data=all.hull,aes(x=v.PCoA1,y=v.PCoA2),colour="black",alpha=0,linetype="dashed") +geom_segment(data=seg.data,aes(x=v.PCoA1,xend=PCoA1,y=v.PCoA2,yend=PCoA2),alpha=0.30) + geom_point(data=centroids[,1:3], aes(x=PCoA1,y=PCoA2,shape=grps),size=4,colour="red") + geom_point(data=seg.data, aes(x=v.PCoA1,y=v.PCoA2,shape=group),size=2) + labs(title="All",x="",y="") +coord_cartesian(xlim = c(-0.2,0.2), ylim = c(-0.25,0.2)) +theme_classic() + theme(legend.position="none")grid.arrange(panel.a,panel.b,panel.c,panel.d,nrow=1)

    PERMANOVA的作者對這個問題的看法

    Marti Anderson: “[…] Although there is also no explicit assumption regarding the homogeneity of spread within each group, PERMANOVA, like ANOSIM (Clarke 1993), will be sensitive to differences in spread (variability) among groups. Thus, if a significant difference between groups is detected using PERMANOVA, then this could be due to differences in location, differences in spread, or a combinationof the two. Perhaps the best approach is to perform a separate test for homogeneity (e.g., using the program PERMDISP) including pair-wise comparisons, as well as examining the average within and between-group distances and associated MDS plots. This will help to determine the nature of the difference between any pair of groups, whether it be due to location, spread, or a combination of the two. […]”

    參考

  • https://www.scribbr.com/frequently-asked-questions/one-way-vs-two-way-anova/

  • MANOVA的前提假設 https://www.real-statistics.com/multivariate-statistics/multivariate-analysis-of-variance-manova/manova-assumptions/ ?https://www.statology.org/manova-assumptions/

  • https://statistics.laerd.com/statistical-guides/one-way-anova-statistical-guide.php

  • https://www.yunbios.net/h-nd-570.html

  • https://mp.weixin.qq.com/s/v_k4Yhe9rBWM9y9A3P3wQw

  • https://mp.weixin.qq.com/s?__biz=MzUzMjA4Njc1MA==&mid=2247484678&idx=1&sn=f95418a311e639704e9848545efc7fd7&scene=21#wechat_redirect

  • https://chrischizinski.github.io/rstats/vegan-ggplot2/

  • https://chrischizinski.github.io/rstats/adonis/

  • https://chrischizinski.github.io/rstats/ordisurf/

  • https://www.rdocumentation.org/packages/vegan/versions/1.11-0/topics/adonis

  • https://www.jianshu.com/p/dfa689f7cafd

  • https://stats.stackexchange.com/questions/312302/adonis-in-vegan-order-of-variables-non-nested-with-one-degree-of-freedom-for

  • https://stats.stackexchange.com/questions/188519/adonis-in-vegan-order-of-variables-or-use-of-strata?noredirect=1

  • https://github.com/vegandevs/vegan/issues/229

  • https://stats.stackexchange.com/questions/476256/adonis-vs-adonis2

  • 清晰解釋Type I, Type II, Type III https://mcfromnz.wordpress.com/2011/03/02/anova-type-iiiiii-ss-explained/

  • 清晰解釋Type I, Type II, Type III https://stats.stackexchange.com/questions/60362/choice-between-type-i-type-ii-or-type-iii-anova

  • https://thebiobucket.blogspot.com/2011/08/two-way-permanova-adonis-with-custom.html#more

  • adonis的前提條件 https://thebiobucket.blogspot.com/2011/04/assumptions-for-permanova-with-adonis.html#more

  • 作者的論文 https://static1.squarespace.com/static/580e3c475016e191c523a0e2/t/5813ba8b5016e1a5b61f454a/1477687949842/Anderson_et_al-2013-ANOSIM+vs.+PERMANOVA.pdf

  • 離散度 adonis https://chrischizinski.github.io/rstats/adonis/

  • 往期精品(點擊圖片直達文字對應教程)

    機器學習

    后臺回復“生信寶典福利第一波”或點擊閱讀原文獲取教程合集

    創作挑戰賽新人創作獎勵來咯,堅持創作打卡瓜分現金大獎

    總結

    以上是生活随笔為你收集整理的Adonis结果P值小于0.05,一定代表两组样品物种构成差异显著吗?的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

    主站蜘蛛池模板: 国产喷水视频 | 中文字幕在线视频免费观看 | 天天色综网 | 亚洲影音| 国产欧美日韩久久 | 爱爱视频一区二区 | youjizz麻豆 | 国产理伦 | 国产资源网站 | 亚洲你我色 | 午夜生活片| 国产精品一二三四区 | 中文字幕一区二区三区人妻四季 | 无码精品人妻一区二区三区漫画 | 久久高清一区 | 国产精品69久久久久孕妇欧美 | 久久中文免费视频 | 国产在线观看你懂的 | 天天综合日日夜夜 | av毛片基地 | 亚洲免费成人在线 | 一区二区午夜 | 精品婷婷 | 亚洲综合精品视频 | 午夜av毛片 | 欧美日韩成人精品 | 欧美系列在线观看 | 中文精品在线观看 | 麻豆视频二区 | 欧美激情在线免费观看 | 国产精品9999 | 国产亚洲美女精品久久久2020 | v天堂中文在线 | 精品无码久久久久久久久果冻 | 欧美在线专区 | 91av短视频 | 日本十八禁视频无遮挡 | 日韩羞羞| 久久亚洲成人 | 人人爽人人爽人人 | 久草福利视频 | 亚洲av永久无码国产精品久久 | a视频在线免费观看 | 欧美韩日国产 | 天天摸天天 | 国产极品视频在线观看 | 99热这里只有精品18 | 国产精品久久久久高潮 | 国产视频首页 | 国产精品久久久久久av | 天天综合人人 | 友田真希一区二区 | 欧洲天堂网 | 在线日韩成人 | 午夜精品久久久久久久99老熟妇 | 亚洲人女屁股眼交6 | 亚洲色图28p | 麻豆自拍视频 | 欧美一区二区三区爽爽爽 | 亚洲综合图片区 | 99久久久无码国产精品免费麻豆 | 欧洲女同同性吃奶 | 国产亚洲美女精品久久久2020 | 欧美视频精品在线 | 黄色男同视频 | 国产精品久久久久久久 | 美女网站免费黄 | 欧美久久久久久又粗又大 | 老熟妇午夜毛片一区二区三区 | 佐山爱在线视频 | 先锋影音av资源站 | 成年人视频在线看 | 久久久久国产精品视频 | 操一操干一干 | 少妇久久精品 | 69精品一区二区三区 | 懂色一区二区三区 | 男人添女人下部高潮视频 | 国产精品免费看片 | 欧美黄色a级大片 | 日韩av一级 | 男女h网站 | 高潮久久久 | 啪啪视屏 | wwwsss在线观看 | 亚洲午夜精品视频 | 自拍偷拍亚洲天堂 | 91超薄肉色丝袜交足高跟凉鞋 | 日本美女一区 | 午夜大片| 91精品久久久久 | 精品国产乱码久久久久久久 | 色屁屁ts人妖系列二区 | 精品人妻一区二区三区四区 | 久久影业| 日韩一级片免费在线观看 | 久久色在线观看 | 久久这里只有精品久久 | 老色鬼在线 |