揭秘“21世纪最性感的职业”:数学、编程、沟通和商业技能一个都不能少!...
你的假期已余額不足!
大數(shù)據(jù)(ID:hzdashuju)在長假期間
給你推送6篇入門級科普,包括:
數(shù)據(jù)與隱私?|?自動駕駛?|?AI與就業(yè)
黃金比例?|?量子計算機?|?數(shù)據(jù)科學(xué)職業(yè)
另外還為既聰明又努力的孩子們
準(zhǔn)備了一份充電書單
不知你這幾天看了幾篇?
今天是我們一起充電的第7天
導(dǎo)讀:?對數(shù)據(jù)科學(xué)這個詞給出一個一致認可的定義,就像品嘗紅酒然后在朋友之間分辨其口感一樣,每個人都不一樣。每個人都會有他自己的定義,沒有誰的更準(zhǔn)確。
然而就其本質(zhì)而言,數(shù)據(jù)科學(xué)是向數(shù)據(jù)提問的藝術(shù):問聰明的問題,得到聰明的有用的回答。不幸的是,反過來也是成立的:笨的問題將得到糟糕的回答!因此,認真構(gòu)造你的問題是從數(shù)據(jù)中提取出有價值洞見的關(guān)鍵。因為這個原因,公司現(xiàn)在都雇傭數(shù)據(jù)科學(xué)家來幫助構(gòu)建這些問題。
作者:亞歷克斯·特列斯(Alex Tellez)、馬克斯·帕普拉(Max Pumperla)、邁克爾·馬洛赫拉瓦(Michal Malohlava)
本文摘編自《Spark機器學(xué)習(xí):核心技術(shù)與實踐》,如需轉(zhuǎn)載請聯(lián)系我們
據(jù)估計,到2018年,全世界的公司在大數(shù)據(jù)有關(guān)的項目上花費將達到1140億美元,相比2013年大約增長300%。
▲持續(xù)增長的大數(shù)據(jù)和數(shù)據(jù)科學(xué)Google Trend
01 數(shù)據(jù)科學(xué)家:21世紀(jì)最性感的職業(yè)
要給出一個典型數(shù)據(jù)科學(xué)家的古板肖像是很容易的:T恤衫,寬松的運動褲,邊框厚厚的眼鏡,在IntelliJ里調(diào)試大段的代碼……大致如此。不過,除了外表之外,數(shù)據(jù)科學(xué)家的特征還有哪些?下圖是我們最喜歡的海報之一,它描述了這個角色:
▲現(xiàn)代數(shù)據(jù)科學(xué)家
數(shù)據(jù)科學(xué)家,21世紀(jì)最性感的職業(yè),需要各學(xué)科的復(fù)合技能,包括數(shù)學(xué),統(tǒng)計學(xué),計算機科學(xué),溝通力以及商業(yè)技能。找到一位數(shù)據(jù)科學(xué)家是不容易的。找到一位伯樂也同樣困難。為此這里提供了一個表格來描述什么是真正的數(shù)據(jù)科學(xué)家。
數(shù)學(xué)和統(tǒng)計學(xué) 機器學(xué)習(xí) 統(tǒng)計建模 實驗設(shè)計 貝葉斯推斷 監(jiān)督學(xué)習(xí):決策樹,隨機森林,邏輯回歸 非監(jiān)督學(xué)習(xí):聚類,降維 優(yōu)化:梯度下降及其變種 | 編程和數(shù)據(jù)庫 計算機科學(xué)基礎(chǔ) 腳本語言,如Python 統(tǒng)計計算包,如R 數(shù)據(jù)庫:SQL和NoSQL 關(guān)系代數(shù) 并行數(shù)據(jù)庫和并行查詢處理 MapReduce概念 Hadoop和Hive/Pig 自定義reducers xaaS經(jīng)驗,如AWS |
領(lǐng)域知識和軟技能 對于業(yè)務(wù)的激情 對于數(shù)據(jù)的好奇 無權(quán)威影響力 駭客精神 問題解決者 有策略,前瞻性和創(chuàng)造力,有創(chuàng)新性和合作精神 | 溝通力和視野 能與資深經(jīng)理合作 講故事的能力 轉(zhuǎn)換數(shù)據(jù)視野為決策和行動 可視化藝術(shù)設(shè)計 R包如ggplot或是lattice 任何可視化工具的知識,如Flare,D3.js,Tableau |
數(shù)學(xué)、統(tǒng)計學(xué)和計算機科學(xué)的一般知識都列出了,但是一個常常在職業(yè)數(shù)據(jù)科學(xué)家中見到的困難是對業(yè)務(wù)問題的理解。這又回到向數(shù)據(jù)提問的問題上來,這一點怎么強調(diào)也不為過:一個數(shù)據(jù)科學(xué)家只有理解了業(yè)務(wù)問題,理解了數(shù)據(jù)的局限性,才能夠向數(shù)據(jù)問出更多聰明的問題;沒有這些根本的理解,即使是最聰明的算法也無法在一個脆弱的基礎(chǔ)上得出可靠的結(jié)論。
1. 數(shù)據(jù)科學(xué)家的一天
對你們中間的一些人來說,這個事實可能會讓你驚訝 - 數(shù)據(jù)科學(xué)家不只是喝著濃縮咖啡忙于閱讀學(xué)術(shù)論文、研究新工具和建模直到凌晨;事實上,這些只占數(shù)據(jù)科學(xué)家相當(dāng)少的一部分時間(濃縮咖啡倒是100%真的)。一天中的絕大部分時間,都花在各種會議里,以更好地理解業(yè)務(wù)問題,分析數(shù)據(jù)的局限性(打起精神,無數(shù)特征工程(feature engineering)和特征提取(feature extraction)的任務(wù)),以及如何能夠把結(jié)果最好地呈現(xiàn)給非數(shù)據(jù)科學(xué)家們,是個繁雜的過程,最好的數(shù)據(jù)科學(xué)家也需要能夠樂在其中;因為這樣才能更好地理解需求和衡量成功。事實上,要從頭到尾描述這個過程,我們完全能夠?qū)懸槐拘聲?#xff01;
那么,向數(shù)據(jù)提問到底涉及哪些方面呢?有時,只是把數(shù)據(jù)存到關(guān)系型數(shù)據(jù)庫里,運行一些SQL查詢語句:“購買這個產(chǎn)品的幾百萬消費者同時購買哪些其他產(chǎn)品?找出最多的前三種。”有時問題會更復(fù)雜,如“分析一個電影評論是正面的還是負面的?”對這些復(fù)雜問題的回答是大數(shù)據(jù)項目對業(yè)務(wù)真正產(chǎn)生影響的地方,同時我們也看到新技術(shù)的快速涌現(xiàn),讓這些問題的回答更加簡單,功能加更豐富。
一些試圖幫助回答數(shù)據(jù)問題的最流行的開源框架包括R、Python、Julia和Octave,所有這些框架在處理小規(guī)模(小于100GB)數(shù)據(jù)集時表現(xiàn)良好。在這里我們對數(shù)據(jù)規(guī)模(大數(shù)據(jù)VS小數(shù)據(jù))給出一個清晰的界定,在工作中一個總的原則是這樣的:
如果你能夠用Excel來打開你的數(shù)據(jù)集,那么你處理的是小規(guī)模數(shù)據(jù)。
2. 大數(shù)據(jù)處理
如果要處理的數(shù)據(jù)集太大放不進單個計算機的內(nèi)存,從而必須分布到一個集群的多個節(jié)點上,該怎么處理?比方說,難道不能僅僅通過修改擴展一下原來的R代碼,來適應(yīng)多個計算節(jié)點的情況?要是事情能這么簡單就好了。把單機算法擴展到多臺機器的困難原因有很多。設(shè)想如下一個簡單的例子,一個文件包含了一系列名字:
B
D
X
A
D
A
我們想算出文件中每個名字出現(xiàn)的次數(shù)。如果這個文件能夠裝進單機,你可以通過Unix命令組合sort和uniq來解決:
?
輸出如下:
?
然而,如果文件很大需要分布到多臺機器上,就有必要采用一種稍微不同的策略,比如把文件進行拆分,每個分片能夠裝入內(nèi)存,對每個分片分別進行計算,最后將結(jié)果進行匯總。因此,即使是簡單的任務(wù),像這個統(tǒng)計名字出現(xiàn)次數(shù)的例子,在分布式環(huán)境中也會變得復(fù)雜。
3. 分布式環(huán)境下的機器學(xué)習(xí)算法
機器學(xué)習(xí)算法把簡單任務(wù)組合為復(fù)雜模式,在分布式環(huán)境下變得更為復(fù)雜。以一個簡單的決策樹算法為例。這個算法創(chuàng)建一個二叉樹來擬合訓(xùn)練數(shù)據(jù)和最小化預(yù)測錯誤。要構(gòu)造這個二叉樹,必須決定樹有哪些分支,這樣每個數(shù)據(jù)點都能夠分派到一個分支上。我們用一個簡單的示例來闡述這個算法:
這是什么顏色?
?
▲二維空間上的紅色和藍色數(shù)據(jù)點示例
考慮這張圖所描述的情況:一個二維平面上分布著一些數(shù)據(jù)點,著色為紅色和藍色。決策樹的目標(biāo)是學(xué)習(xí)和概括數(shù)據(jù)的特征,幫助判斷新數(shù)據(jù)點的顏色。在我們這個例子里,可以很容易地看出來這些數(shù)據(jù)點大致遵循一種國際象棋棋盤的模式,但是算法必須靠自己學(xué)習(xí)出來。它從找到一個最佳的能把紅點和藍點劃分開的水平線或者豎直線開始。將這條線存儲在決策樹的根節(jié)點里,然后遞歸地在分塊中執(zhí)行這個步驟,直到分塊中只有一個數(shù)據(jù)點時算法結(jié)束。
▲最終的決策樹及其預(yù)測與原空間數(shù)據(jù)點的映射
4. 將數(shù)據(jù)拆分到多臺機器
現(xiàn)在我們假設(shè)數(shù)據(jù)點非常多,單機內(nèi)存容納不下,因此我們必須把數(shù)據(jù)分片,每臺機器都只包含一部分數(shù)據(jù)點。這樣我們解決了內(nèi)存問題,但這也意味著我們現(xiàn)在需要把計算分布到一個集群的機器上。這是和單機計算的第一個不同點。如果數(shù)據(jù)能夠裝進一個單機的內(nèi)存,對數(shù)據(jù)做決策會比較容易,因為算法能夠同時訪問所有數(shù)據(jù),但是在分布式算法的情況下,這一點就不再成立了,算法就訪問數(shù)據(jù)而言必須足夠“聰明”。既然我們的目標(biāo)是構(gòu)造一個決策樹來預(yù)測平面上新數(shù)據(jù)點的顏色,因此我們需要設(shè)法構(gòu)造出一個和單機上一樣的樹。
最原始的解決方案是構(gòu)造一個簡單樹,把數(shù)據(jù)點按照機器邊界分片。不過很顯然不好,因為數(shù)據(jù)點分布完全沒有考慮到數(shù)據(jù)點的顏色。
另一種解法是在X軸和Y軸方向上嘗試所有的分片可能,找到把顏色區(qū)分開的最佳劃分,也就是說,能夠把數(shù)據(jù)點分為兩組,每組中一種顏色盡可能多而另一種顏色盡可能少。設(shè)想算法正在測試按照X = 1.6這條線來分割數(shù)據(jù)。這意味著算法需要詢問集群中的每一臺機器,得到每臺機器按照這條線分片的結(jié)果,然后匯總決定這條線是不是合適。當(dāng)它找到了一個最佳的分片方法,它也需要把這個決定通知集群里所有的機器,這樣每臺機器才能夠知道自己本地每個數(shù)據(jù)點現(xiàn)在的分片情況。
和單機情況相比,這個分布式?jīng)Q策樹構(gòu)造算法更復(fù)雜,而且需要一種分布式計算方式。如今,隨著集群的普及和對大數(shù)據(jù)集分析需求的增長,這已經(jīng)是一個基本需求了。
即便是這樣兩個簡單的例子也可以說明,對于大數(shù)據(jù)集,合適的分布式計算框架是必須的。具體包括:
分布式存儲,即,如果單個節(jié)點容納不下所有的數(shù)據(jù),需要一種方式來把數(shù)據(jù)分布到多臺機器上處理
一個計算范式(paradigm),用于處理和轉(zhuǎn)換分布式數(shù)據(jù),使用數(shù)學(xué)(和統(tǒng)計學(xué))算法和工作流
支持持久化和重用定義好的工作流和模型
支持在生產(chǎn)環(huán)境中部署統(tǒng)計模型
簡言之,我們需要一個框架來支持常見的數(shù)據(jù)科學(xué)任務(wù)。有人會覺得這不是必需的,因為數(shù)據(jù)科學(xué)家更喜歡用一些已有的工具,比如R、Weka,或者Python scikit。但是,這些工具并不是為大規(guī)模分布式數(shù)據(jù)處理和并行計算設(shè)計的。即便R和Python有一些庫提供了分布式和并行計算的有限支持,這些庫都受到一個根本性的限制,那就是它們的基礎(chǔ)平臺,R和Python,根本不是為這種大規(guī)模數(shù)據(jù)處理和計算而設(shè)計的。
5. 從Hadoop MapReduce到Spark
隨著數(shù)據(jù)量的增長,單機工具已不再能夠滿足工業(yè)界的需求,這給新的數(shù)據(jù)處理方法和工具提供了機會,尤其是Hadoop MapReduce。MapReduce是基于Google一篇論文提出的想法,MapReduce: Simplified Data Processing on Large Clusters (https://research.google.com/archive/mapreduce.html)。另一方面,MapReduce是一個通用框架,沒有為創(chuàng)建機器學(xué)習(xí)工作流提供庫或者任何顯式支持。經(jīng)典MapReudce實現(xiàn)的另一個局限是在計算過程中有很多磁盤I/O操作,沒有充分利用大內(nèi)存帶來的益處。
你已經(jīng)看到了,雖然已經(jīng)有了幾個機器學(xué)習(xí)工具和分布式平臺,但沒有哪個能充分滿足在分布式環(huán)境下進行大數(shù)據(jù)機器學(xué)習(xí)的需求。這為Apache Spark打開了大門。
▲進屋來吧,Apache Spark!
Spark在2010年創(chuàng)建于UC Berkeley AMP(Algorithms, Machines, People,算法,機器,人)實驗室,在創(chuàng)建時就考慮了速度、易用性和高級分析功能。Spark和其他分布式框架如Hadoop的一個關(guān)鍵區(qū)別在于數(shù)據(jù)集可以緩存在內(nèi)存里,這讓它很適合用作機器學(xué)習(xí),因為機器學(xué)習(xí)天然需要迭代計算,而且數(shù)據(jù)科學(xué)家總是需要對同一塊數(shù)據(jù)進行多次訪問。
Spark能夠以多種方式運行,包括:
本地模式:在一個單獨的主機上運行單個Java虛擬機(JVM)
獨立Spark集群:在多臺主機上運行多個JVM
通過資源管理器,如Yarn/Mesos:應(yīng)用部署由資源管理器管理。資源管理器負責(zé)控制節(jié)點的分配、應(yīng)用、分發(fā)和部署
6. 什么是Databricks
如果你了解Spark項目,你很可能也聽說過一個叫作Databricks的公司,不過也許不知道Databricks和Spark具體是什么關(guān)系。概要說來, Apache Spark項目的創(chuàng)建者們創(chuàng)建了Databricks公司,貢獻了超過75%的Spark代碼。除了是推動Spark開發(fā)的巨大力量之外,Databricks也為開發(fā)人員,管理人員,培訓(xùn)人員和數(shù)據(jù)分析師等提供Spark認證。不過Spark代碼庫并不僅僅是由Databricks貢獻的,IBM、Cloudera和微軟也積極參與了Spark的開發(fā)。
順便說來,Databricks也在歐洲和美國組織Spark峰會,一個頂級的Spark會議,一個了解Spark最新開發(fā)進展和他人是如何在各自的生態(tài)里使用Spark的好地方。
7. Spark包含的內(nèi)容
好了,現(xiàn)在假設(shè)你已經(jīng)下載了最新版本的Spark(具體哪個版本取決于你打算以哪種方式運行Spark)而且已經(jīng)運行了經(jīng)典的”Hello, World!”程序了……接下來呢?
Spark帶有5個庫,這些庫既能夠單獨使用,也能一起工作,取決于具體需要解決的問題。盡可能廣泛地接觸Spark平臺,這樣對每一個庫的功能(和局限)有更好的理解。這5個庫是:
內(nèi)核:Spark的核心基礎(chǔ)設(shè)施,提供了表示和存儲數(shù)據(jù)的原始數(shù)據(jù)類型,稱為RDD(Resilient Distributed Dataset,彈性分布式數(shù)據(jù)集),操作數(shù)據(jù)的任務(wù)(task)和作業(yè)(job)。
SQL:在RDD基礎(chǔ)上提供的用戶友好的API,引入了DataFrame和SQL來操作存儲的數(shù)據(jù)。
MLlib(Machine Learning Library,機器學(xué)習(xí)庫):這是Spark自身內(nèi)置的機器學(xué)習(xí)算法庫,可以在Spark應(yīng)用程序中直接使用。
GraphX:供圖和圖相關(guān)計算使用。在后續(xù)章節(jié)中我們將深入探討。
流(Streaming):支持來自多種數(shù)據(jù)源的實時數(shù)據(jù)流,如Kafka、Twitter、Flume、TCP套接字,等等。
Spark平臺也支持第三方庫擴展。現(xiàn)在已經(jīng)有很多的第三方庫,如支持讀取CSV或Avro格式的文件,與Redshift集成的,以及封裝了H2O機器學(xué)習(xí)庫的Sparkling Water。
02 H2O.ai簡介
H2O是一個開源機器學(xué)習(xí)平臺,在Spark上運行得非常好;事實上它是第一批被Spark認證的第三方擴展包。
Sparkling Water(H2O + Spark)把H2O平臺整合進Spark,因此同時具有H2O的機器學(xué)習(xí)能力和Spark的全部功能,也就是說,用戶可以在Spark RDD/DataFrame上跑H2O算法,既可以出于實驗?zāi)康?#xff0c;也可以用于部署。之所以成為可能,是因為H2O和Spark共享JVM,因此在兩個平臺之間,數(shù)據(jù)可以無縫傳輸。H2O以H2O frame的格式存儲數(shù)據(jù),是Spark RDD/DataFrame經(jīng)過列壓縮后的數(shù)據(jù)集表示形式。
Sparkling Water的功能簡要包括:
在Spark工作流中使用H2O算法
在Spark和H2O數(shù)據(jù)結(jié)構(gòu)之間做數(shù)據(jù)轉(zhuǎn)換
使用Spark RDD/DataFrame 作為H2O算法輸入
使用H2O frame作為MLlib算法輸入(在我們在以后做特征工程時會很方便)
在Spark上透明執(zhí)行Sparkling Water程序(比如,我們可以在Spark Streaming內(nèi)運行Sparkling Water程序)
使用H2O用戶界面來瀏覽Spark數(shù)據(jù)
Sparkling Water的設(shè)計
Sparkling Water設(shè)計為一個普通的Spark程序運行。因此,它作為一個程序提交給Spark,在Spark執(zhí)行器中啟動。隨后H2O啟動它的各種服務(wù),包括一個鍵值存儲器(key-value store)和一個內(nèi)存管理器,并把它們組織成一個云,其拓撲和底層的Spark 集群拓撲一致。
如前所述,Sparkling Water支持在不同類型的RDD/DataFrame和H2O frame之間來回轉(zhuǎn)換。在把hex frame轉(zhuǎn)換為RDD時,數(shù)據(jù)并沒有做復(fù)制,而是在hex frame外做了一層包裝,提供一個類似RDD的API,支持此API的是里面的hex frame。而把RDD/DataFrame轉(zhuǎn)換為H2O frame則需要做數(shù)據(jù)復(fù)制,因為需要把數(shù)據(jù)從Spark轉(zhuǎn)換進H2O自身的存儲。不過,存儲在H2O frame中的數(shù)據(jù)高度壓縮,不再需要保持在RDD中。
▲sparkling water和 Spark之間共享數(shù)據(jù)
03 H2O和Spark MLlib的區(qū)別
如前所述,MLlib是一個用Spark構(gòu)建的庫,包含流行的機器學(xué)習(xí)算法。一點也不奇怪,H2O和MLlib有很多共同的算法,但是在實現(xiàn)和功能上有所區(qū)別。H2O提供了一個非常方便的功能,允許用戶可視化數(shù)據(jù)和執(zhí)行特征工程任務(wù),這一點我們在后續(xù)章節(jié)中會深入討論。其數(shù)據(jù)可視化是基于一個web友好的圖形界面,可以在code shell和一個類似記事本的環(huán)境之間無縫切換。下圖是一個H2O記事本示例 - 稱為Flow - 你很快就會熟悉:
?
H2O提供的另一個非常好的功能是允許數(shù)據(jù)科學(xué)家使用網(wǎng)格搜索很多算法自帶的超參數(shù)。網(wǎng)格搜索是一個為了簡化模型配置,優(yōu)化算法所有超參數(shù)的方式。想知道哪個超參數(shù)需要修改和如何修改通常是困難的,網(wǎng)格搜索允許我們同時試驗很多超參數(shù),測量其輸出,然后根據(jù)質(zhì)量需求選擇最好的模型。H2O網(wǎng)格搜索可以和模型交叉驗證及多種停止條件組合,產(chǎn)生一些高級策略,如從一個超空間許多的參數(shù)中選擇1000個隨機參數(shù),找到一個最佳模型,可以在2分鐘內(nèi)完成訓(xùn)練并使AUC大于0.7。
04 數(shù)據(jù)整理
問題域的原始數(shù)據(jù)常常來自不同的源,有著不同且往往不兼容的格式。Spark編程模型的美在于它擁有自定義數(shù)據(jù)操作來處理輸入數(shù)據(jù),轉(zhuǎn)換為一個可供將來特征工程和模型構(gòu)建使用的普通格式的能力。這個過程通常稱為數(shù)據(jù)整理,也是很多數(shù)據(jù)科學(xué)項目成功的關(guān)鍵所在。
05 數(shù)據(jù)科學(xué):一個迭代過程
大數(shù)據(jù)項目的處理流程通常是迭代的,即反復(fù)測試新的想法、新的功能,調(diào)整各種超參數(shù)等,保持一種快速失敗(fast fail)的想法。這些項目的最終結(jié)果通常是一個模型,能夠回答提出的問題。注意我們并沒有說要精確回答。如今很多大數(shù)據(jù)科學(xué)家碰到一個陷阱,他們的模型不能泛化來適應(yīng)新的數(shù)據(jù),也就是說他們過度擬合了已有數(shù)據(jù),導(dǎo)致模型在處理新數(shù)據(jù)時表現(xiàn)糟糕。精確性是極度任務(wù)相關(guān)的,通常取決于業(yè)務(wù)的需要,加上對模型輸出的成本收益敏感度分析。
關(guān)于作者:亞歷克斯·特列斯,一名終身的數(shù)據(jù)黑客/愛好者,對數(shù)據(jù)科學(xué)及其在商業(yè)問題上的應(yīng)用充滿了激情。他在多個行業(yè)擁有豐富的經(jīng)驗,包括銀行業(yè)、醫(yī)療保健、在線約會、人力資源和在線游戲。
馬克斯·帕普拉,一名數(shù)據(jù)科學(xué)家和工程師,專注于深度學(xué)習(xí)及其應(yīng)用。他目前在Skymind擔(dān)任深度學(xué)習(xí)工程師,并且是aetros.com的聯(lián)合創(chuàng)始人。Max是幾個Python軟件包的作者和維護者,包括elephas,一個使用Spark的分布式深度學(xué)習(xí)庫。他的開源足跡包括對許多流行的機器學(xué)習(xí)庫的貢獻,如keras、deeplearning4j和hyperopt。
邁克爾·馬洛赫拉瓦,Sparkling Water的創(chuàng)建者、極客和開發(fā)者,Java、Linux、編程語言愛好者,擁有10年以上的軟件開發(fā)經(jīng)驗。他于2012年在布拉格的查爾斯大學(xué)獲得博士學(xué)位,并在普渡大學(xué)攻讀博士后。?
本文摘編自《Spark機器學(xué)習(xí):核心技術(shù)與實踐》,經(jīng)出版方授權(quán)發(fā)布。
延伸閱讀《Spark機器學(xué)習(xí)》
點擊上圖了解及購買
轉(zhuǎn)載請聯(lián)系微信:togo-maruko
推薦語:以實踐方式助你掌握Spark機器學(xué)習(xí)技術(shù)。
更多精彩
在公眾號后臺對話框輸入以下關(guān)鍵詞
查看更多優(yōu)質(zhì)內(nèi)容!
PPT?|?報告?|?讀書?|?書單
Python?|?機器學(xué)習(xí)?|?深度學(xué)習(xí)?|?神經(jīng)網(wǎng)絡(luò)
區(qū)塊鏈?|?揭秘?|?干貨?|?數(shù)學(xué)
猜你想看
長假還沒安排?這7本書和7部影視作品,讓你宅家或者堵在路上都一樣精彩
一言不合暴打產(chǎn)品經(jīng)理、槍殺同事?5本書,帶你告別低情商
數(shù)據(jù)可視化干貨:使用pandas和seaborn制作炫酷圖表(附代碼)
一文讀懂AI簡史:當(dāng)年各國燒錢許下的愿,有些至今仍未實現(xiàn)
Q:?你的職業(yè)夠性感嗎?
歡迎留言與大家分享
覺得不錯,請把這篇文章分享給你的朋友
轉(zhuǎn)載 / 投稿請聯(lián)系:baiyu@hzbook.com
更多精彩,請在后臺點擊“歷史文章”查看
點擊閱讀原文,了解更多
總結(jié)
以上是生活随笔為你收集整理的揭秘“21世纪最性感的职业”:数学、编程、沟通和商业技能一个都不能少!...的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 手绘导图版:深入解析机器学习在风控场景中
- 下一篇: 智能驾驶系统是怎样看懂交通标志的?3张流