日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 >

cauchy problem of 1st order PDE from Partial Differential Equations

發布時間:2025/3/18 35 豆豆
生活随笔 收集整理的這篇文章主要介紹了 cauchy problem of 1st order PDE from Partial Differential Equations 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

pure math

加一個一個Episodes

pde進可攻退可守

pure math

f:R→R,y=f(x),dy=f′(x)dxf:\mathbb{R}\rightarrow\mathbb{R},y=f(x),dy=f'(x)dxf:RR,y=f(x),dy=f(x)dx

f′(x)≠0?x=f?1(y)f'(x)\neq0 \Rightarrow x=f^{-1}(y)f(x)?=0?x=f?1(y)

A:Rn→Rn,y=Ax,dy=Adx.A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, y=Ax,dy=Adx. A:RnRn,y=Ax,dy=Adx.

det(A)≠0?x=A?1ydet(A)\neq 0 \Rightarrow x=A^{-1}ydet(A)?=0?x=A?1y

In general, you can not explicitly solve for the inverse!

f:Rn→Rn,y=f(x),dy=Dfdx.f:\mathbb{R}^n \rightarrow \mathbb{R}^n, y=f(x),dy=Dfdx.f:RnRn,y=f(x),dy=Dfdx.

Df=[δ(y1,y2,y3,...yn)?(x1,x2,x3,...,xn)]Df = [\frac{\delta(y_1,y_2,y_3,...y_n)}{\partial (x_1,x_2,x_3, ..., x_n)}]Df=[?(x1?,x2?,x3?,...,xn?)δ(y1?,y2?,y3?,...yn?)?]

Jacobian matrix

det(Df)≠0?x=f?1(y)det(Df) \neq 0 \Rightarrow x=f^{-1}(y)det(Df)?=0?x=f?1(y)

在連續的函數中

一個點大于0

implies

一段大于0

theorem cometheorem gobut example last forever 這個代碼的符號是在鍵盤的左上角的符號 三行五行的證明一定要會但是兩頁的證明不要看了一定要會用用久了一定會證明

theoremcome,theoremgo,butexamplelastforevertheorem come, theorem go, but example last forevertheoremcome,theoremgo,butexamplelastforever

jacobian matrix

dx=xudu+xvdv,dy=yudu+yvdvdx=x_u du+x_v dv, dy = y_u du+y_v dvdx=xu?du+xv?dv,dy=yu?du+yv?dv

順便吹爆這個math formula的插件,真香

ux+3y23uy=2,u(x,1)=1+xu_x+3y^\frac{2}{3}u_y=2, u(x,1)=1+xux?+3y32?uy?=2,u(x,1)=1+x

dxdt=1,dydt=3y23,dudt=2\frac{dx}{dt}=1, \frac{dy}{dt}=3y^\frac{2}{3},\frac{du}{dt}=2dtdx?=1,dtdy?=3y32?,dtdu?=2

(x,y,u)∣t=0=(x0,y0,u0)=(s,1,1+s)(x,y,u)|_{t=0}=(x_0,y_0,u_0)=(s,1,1+s)(x,y,u)t=0?=(x0?,y0?,u0?)=(s,1,1+s)

x=t+s,y=(t+1)3,u=2t+1+sx=t+s,y=(t+1)^3, u = 2t+1+sx=t+s,y=(t+1)3,u=2t+1+s

?(x,y)?(t,s)\frac{\partial (x,y)}{\partial (t,s)}?(t,s)?(x,y)?

D(q)=[p1+p2+2p3cosq2p2+p3cosq2p2+p3cosq2p2]D(q) = \begin{bmatrix} p_1+p_2+2p_3cosq_{2} & p_2+p_3cosq_2\\ p_2+p_3cosq_2 & p_2 \end{bmatrix} D(q)=[p1?+p2?+2p3?cosq2?p2?+p3?cosq2??p2?+p3?cosq2?p2??]

C(q,q˙)=[?p3q˙2sinq2?p3(q˙1+q˙2)sinq2p3q˙1sinq20]C(q,\dot q) = \begin{bmatrix} -p_3\dot q_2sinq_2 &-p_3(\dot q_1+\dot q_2)sinq_2 \\ p_3\dot q_1sinq_2 & 0 \end{bmatrix} C(q,q˙?)=[?p3?q˙?2?sinq2?p3?q˙?1?sinq2???p3?(q˙?1?+q˙?2?)sinq2?0?]

=∣xtxsytys∣=∣113(t+1)20∣=?3(t+1)2≠0\frac{}{}=\begin{vmatrix} x_t & x_s \\ y_t & y_s\end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 3(t+1)^2 & 0\end{vmatrix} = -3(t+1)^2 \neq 0?=?xt?yt??xs?ys???=?13(t+1)2?10??=?3(t+1)2?=0

t=y13?1,s=x+1?y13t=y^{\frac{1}{3}}-1, s=x+1-y^{\frac{1}{3}}t=y31??1,s=x+1?y31?

eliminate s and t

u(x,y)=2t+1+s=x+y13u(x,y)=2t+1+s=x+y^{\frac{1}{3}}u(x,y)=2t+1+s=x+y31?

t≠?1t\neq -1t?=?1

t=?1?y=0isasingualarpointofD.E.t = -1 \Rightarrow y = 0 is a singualar point of D.E.t=?1?y=0isasingualarpointofD.E.

Dimensional Analysis: (from equation!)

[u][x]=[y]23[u][y]?[x]=[y]13\frac{[u]}{[x]}=[y]^{\frac{2}{3}}\frac{[u]}{[y]} \Rightarrow [x]=[y]^\frac{1}{3}[x][u]?=[y]32?[y][u]??[x]=[y]31?

x→λ2x,y→λyx \rightarrow \lambda^2 x, y \rightarrow \lambda yxλ2x,yλy

u(u(u(

$$$$

$$$$

$$$$

$$$$

$$$$

$$$$

$$$$

$$$$

$$$$

$$$$

$$$$

與50位技術專家面對面20年技術見證,附贈技術全景圖

總結

以上是生活随笔為你收集整理的cauchy problem of 1st order PDE from Partial Differential Equations的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。