杨老师的新课!数学应用
d2xdt2+64x=0\frac{d^2x}{dt^2}+64x=0dt2d2x?+64x=0
x(0)=23x(0)=\frac{2}{3}x(0)=32?
x′(0)=?43x'(0)=-\frac{4}{3}x′(0)=?34?
x(t)=23cos8t?16sin8t=sin?cosδt+cos?sinδtx(t)=\frac{2}{3}cos8t-\frac{1}{6}sin8t=sin\phi cos \delta t+cos \phi sin \delta tx(t)=32?cos8t?61?sin8t=sin?cosδt+cos?sinδt
=(23)2+(?16)2sin(δt+?)=\sqrt{(\frac{2}{3})^2+(-\frac{1}{6})^2}sin(\delta t + \phi)=(32?)2+(?61?)2?sin(δt+?)
tan?=23?16tan \phi = \frac{\frac{2}{3}}{-\frac{1}{6}}tan?=?61?32??
?=arctan?(?4)+π=1.816rad\phi = \arctan(-4)+\pi=1.816 rad?=arctan(?4)+π=1.816rad
τ\tauτ
d2x\frac{d^2x}{}d2x?
critical damp motion,
λ2?ω2=0\lambda^2-\omega^2=0λ2?ω2=0
β2=4ωk\beta^2=4\omega kβ2=4ωk
x(t)=c1e?λt+c2te?λtx(t)=c_1e^{-\lambda t}+c_2 t e^{-\lambda t}x(t)=c1?e?λt+c2?te?λt
λ2?ω2<0\lambda ^2-\omega^2<0λ2?ω2<0
x(t)=e?λt(c1cosx(t)=e^{-\lambda t}(c_1 cosx(t)=e?λt(c1?cos
undamped motion
這幾個區分一下哈
- undamped motion 就是這個系統沒有阻力,就是一個正弦波,快樂的搖擺
- overdamped motion 就是這個系統阻力賊大,就是這個東西一把就完事了,回不了平衡點了
- critical damped mption 就是能回到平衡點,但是只能一次,就是一個臨界點,再小一點就能震起來了
- underdamped motion 就是這個系統的阻力非常小,這個東西緩慢的下降
d2xdt2+βmdxdt+kmx=0\frac{d^2x}{dt^2}+\frac{\beta}{m}\frac{dx}{dt}+\frac{k}{m}x=0dt2d2x?+mβ?dtdx?+mk?x=0
β=2\beta = 2β=2
KaTeX parse error: Undefined control sequence: \ft at position 7: k=4 lb\?f?t?
m=8lb32ft/ω2m=\frac{8lb}{32ft/\omega^2}m=32ft/ω28lb?
d2xdt2+8dxdt+16x=0\frac{d^2x}{dt^2}+8\frac{dx}{dt}+16x=0dt2d2x?+8dtdx?+16x=0
x(0)=0x(0)=0x(0)=0
x′(0)=?3x'(0)=-3x′(0)=?3
x(t)=?3te?4tx(t)=-3te^{-4t}x(t)=?3te?4t
x′(t)=0→?3e?4t(1?4t)=0x'(t)=0 \rightarrow -3 e^{-4t}(1-4t)=0x′(t)=0→?3e?4t(1?4t)=0
t=14t=\frac{1}{4}t=41?
x(14)=?0.276ftx(\frac{1}{4})=-0.276ftx(41?)=?0.276ft
above the equilibrium
d2xdt+βmdxdt+kmx=0\frac{d^2x}{dt}+\frac{\beta}{m}\frac{dx}{dt}+\frac{k}{m}x=0dtd2x?+mβ?dtdx?+mk?x=0
β=1\beta = 1β=1
m=16lb32ft/s2=12lbs2ftm=\frac{16lb}{32 ft/s^2}=\frac{1}{2} \frac{lbs^2}{ft}m=32ft/s216lb?=21?ftlbs2?
k=16lb/3.2ft=5lb/ftk=16lb/3.2ft=5lb/ftk=16lb/3.2ft=5lb/ft
d2(x)dt2+2dxdt+10x=0\frac{d^2(x)}{dt^2}+2\frac{dx}{dt}+10x=0dt2d2(x)?+2dtdx?+10x=0
x(0)=?2x(0)=-2x(0)=?2
x′(0)=0x'(0)=0x′(0)=0
x(t)=e?t(?2cos3t?23sin3t)x(t)=e^{-t}(-2cos3t-\frac{2}{3}sin3t)x(t)=e?t(?2cos3t?32?sin3t)
e?t[(?2)]e^{-t}[\sqrt{(-2)}]e?t[(?2)?]
15\frac{1}{5}51?
x(t)=e?3t(3851cost?8651sint)?(25102cos4t+5051)x(t)=e^{-3t}(\frac{38}{51}cost-\frac{86}{51}sint)-(\frac{25}{102}cos4t+\frac{50}{51})x(t)=e?3t(5138?cost?5186?sint)?(10225?cos4t+5150?)
with damping
d2xdt2+ω2x=F0sinγt,x(0)=0,x′(0)=0\frac{d^2x}{dt^2}+\omega^2x= F_0sin \gamma t, x(0)=0,x'(0)=0dt2d2x?+ω2x=F0?sinγt,x(0)=0,x′(0)=0
x(t)=F0ω(ω02?γ2)(?γsinωt+ωsinγt),γ≠ωx(t)=\frac{F_0}{\omega(\omega_0^2-\gamma^2)}(-\gamma sin\omega t+\omega sin \gamma t), \gamma \ne \omegax(t)=ω(ω02??γ2)F0??(?γsinωt+ωsinγt),γ?=ω
$$x(t)=\frac{F_0}{2\omega^2}sin\omega t - $$
共振,就是兩個函數的波峰在同樣的時候出現,這樣他們的就越來越強,越來越強
ω\omegaω
β\betaβ
resonance
resonance
axis of symmetry
deflection curve
beam
d2Mdx2=w(x)→load負載\frac{d^2M}{dx^2}=w(x) \rightarrow load 負載dx2d2M?=w(x)→load負載
M:boundaryM: boundary M:boundary
彎矩
抗彎剛度
M=EIKM=EIKM=EIK
K≈y′′K \approx y''K≈y′′
deflection
constant load
w0w_0w0?
EId4ydx4=w0EI\frac{d^{4}y}{dx^4}=w_0EIdx4d4y?=w0?
y(0)=0y(0)=0y(0)=0
y(l)=0y(l)=0y(l)=0
y′(0)=0y'(0)=0y′(0)=0
y′(l)=0y'(l)=0y′(l)=0
y(x)=y(x)=y(x)=
eigenvalue
eigenfunction
y′′+λy=0y''+\lambda y =0y′′+λy=0
y(0)=0y(0)=0y(0)=0
y(L)=0y(L)=0y(L)=0
L≠0L\ne 0L?=0
sol
λ=0\lambda =0λ=0
y′′=0y''=0y′′=0
y=c1x+c2y=c_1x+c_2y=c1?x+c2?
y(0)=0→c2=0y(0)=0 \rightarrow c_2=0y(0)=0→c2?=0
y(l)=0→c1L=0→c1=0y(l)=0 \rightarrow c_1L=0 \rightarrow c_1=0y(l)=0→c1?L=0→c1?=0
case ii
λ<0\lambda <0λ<0
λ=?\lambda = -λ=?
λ>0\lambda >0λ>0
λ=α2,α>0\lambda = \alpha^2, \alpha >0λ=α2,α>0
y′′+α2y=0→y=c1cos(αx)y''+\alpha^2y=0 \rightarrow y=c_1 cos(\alpha x)y′′+α2y=0→y=c1?cos(αx)
euler load
LLL
PPP
EId2ydx2+py=0EI\frac{d^2y}{dx^2}+py=0EIdx2d2y?+py=0
y(0)=0y(0)=0y(0)=0
y(L)=0y(L)=0y(L)=0
λ=PEI\lambda = \frac{P}{EI}λ=EIP?
y′′+λy=0y''+\lambda y =0y′′+λy=0
y(0)=0y(0)=0y(0)=0
y(l)=0y(l)=0y(l)=0
pn=n2π2EIL2,n=1,2,3,...p_n=\frac{n^2\pi^2EI}{L^2}, n = 1,2,3,...pn?=L2n2π2EI?,n=1,2,3,...
p1=π2EI/L2p_1=\pi^2EI/L^2p1?=π2EI/L2
yyy
LLL
y(x)y(x) y(x)
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
總結
以上是生活随笔為你收集整理的杨老师的新课!数学应用的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 2021 4 21 管理心得
- 下一篇: 吃香椿的注意事项:焯水