日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程语言 > python >内容正文

python

11 Python Pandas tricks that make your work more efficient

發布時間:2025/3/19 python 30 豆豆
生活随笔 收集整理的這篇文章主要介紹了 11 Python Pandas tricks that make your work more efficient 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

Pandas is a widely used Python package for structured data. There’re many nice tutorials of it, but here I’d still like to introduce a few cool tricks the readers may not know before and I believe they’re useful.

read_csv

Everyone knows this command. But the data you’re trying to read is large, try adding this argument:?nrows = 5?to only read in a tiny portion of the table before actually loading the whole table. Then you could avoid the mistake by choosing wrong delimiter (it may not always be comma separated).

(Or, you can use ‘head’ command in linux to check out the first 5 rows (say) in any text file:?head -c 5 data.txt)

Then, you can extract the column list by using?df.columns.tolist()?to extract all columns, and then add?usecols = [‘c1’, ‘c2’,?…]?argument to load the columns you need. Also, if you know the data types of a few specific columns, you can add the argument?dtype = {‘c1’: str, ‘c2’: int,?…}?so it would load faster. Another advantage of this argument that if you have a column which contains both strings and numbers, it’s a good practice to declare its type to be string, so you won’t get errors while trying to merge tables using this column as a key.

select_dtypes

If data preprocessing has to be done in Python, then this command would save you some time. After reading in a table, the default data types for each column could be bool, int64, float64, object, category, timedelta64, or datetime64. You can first check the distribution by

df.dtypes.value_counts()

to know all possible data types of your dataframe, then do

df.select_dtypes(include=[‘float64’, ‘int64’])

to select a sub-dataframe with only numerical features.

copy

This is an important command if you haven’t heard of it already. If you do the following commands:

import pandas as pd df1 = pd.DataFrame({ ‘a’:[0,0,0], ‘b’: [1,1,1]}) df2 = df1 df2[‘a’] = df2[‘a’] + 1 df1.head()

You’ll find that df1 is changed. This is because df2 = df1 is not making a copy of df1 and assign it to df2, but setting up a pointer pointing to df1. So any changes in df2 would result in changes in df1. To fix this, you can do either

df2 = df1.copy()

or

from copy import deepcopy df2 = deepcopy(df1)

map

This is a cool command to do easy data transformations. You first define a dictionary with ‘keys’ being the old values and ‘values’ being the new values.

level_map = {1: ‘high’, 2: ‘medium’, 3: ‘low’} df[‘c_level’] = df[‘c’].map(level_map)

Some examples: True, False to 1, 0 (for modeling); defining levels; user defined lexical encodings.

apply or not?apply?

If we’d like to create a new column with a few other columns as inputs, apply function would be quite useful sometimes.

def rule(x, y):if x == ‘high’ and y > 10:return 1else:return 0 df = pd.DataFrame({ 'c1':[ 'high' ,'high', 'low', 'low'], 'c2': [0, 23, 17, 4]}) df['new'] = df.apply(lambda x: rule(x['c1'], x['c2']), axis = 1) df.head()

In the codes above, we define a function with two input variables, and use the apply function to apply it to columns ‘c1’ and ‘c2’.

but?the problem of ‘apply’ is that it’s sometimes too slow. Say if you’d like to calculate the maximum of two columns ‘c1’ and ‘c2’, of course you can do

df[‘maximum’] = df.apply(lambda x: max(x[‘c1’], x[‘c2’]), axis = 1)

but you’ll find it much slower than this command:

df[‘maximum’] = df[[‘c1’,’c2']].max(axis =1)

Takeaway: Don’t use apply if you can get the same work done with other built-in functions (they’re often faster). For example, if you want to round column ‘c’ to integers, do?round(df[‘c’], 0)?instead of using the apply function.

value counts

This is a command to check value distributions. For example, if you’d like to check what are the possible values and the frequency for each individual value in column ‘c’ you can do

df[‘c’].value_counts()

There’re some useful tricks / arguments of it:
A.?normalize = True: if you want to check the frequency instead of counts.
B.?dropna = False: if you also want to include missing values in the stats.
C.?sort = False: show the stats sorted by values instead of their counts.
D.?df[‘c].value_counts().reset_index(): if you want to convert the stats table into a pandas dataframe and manipulate it.

number of missing?values

When building models, you might want to exclude the row with too many missing values / the rows with all missing values. You can use?.isnull() and?.sum() to count the number of missing values within the specified columns.

import pandas as pd import numpy as np df = pd.DataFrame({ ‘id’: [1,2,3], ‘c1’:[0,0,np.nan], ‘c2’: [np.nan,1,1]}) df = df[[‘id’, ‘c1’, ‘c2’]] df[‘num_nulls’] = df[[‘c1’, ‘c2’]].isnull().sum(axis=1) df.head()

select rows with specific?IDs

In SQL we can do this using SELECT * FROM?… WHERE ID in (‘A001’, ‘C022’,?…) to get records with specific IDs. If you want to do the same thing with pandas, you can do

df_filter = df[‘ID’].isin([‘A001’,‘C022’,...]) df[df_filter]

Percentile groups

You have a numerical column, and would like to classify the values in that column into groups, say top 5% into group 1, 5–20% into group 2, 20%-50% into group 3, bottom 50% into group 4. Of course, you can do it with pandas.cut, but I’d like to provide another option here:

import numpy as np cut_points = [np.percentile(df[‘c’], i) for i in [50, 80, 95]] df[‘group’] = 1 for i in range(3):df[‘group’] = df[‘group’] + (df[‘c’] < cut_points[i]) # or <= cut_points[i]

which is fast to run (no apply function used).

to_csv

Again this is a command that everyone would use. I’d like to point out two tricks here. The first one is

print(df[:5].to_csv())

You can use this command to print out the first five rows of what are going to be written into the file exactly.

Another trick is dealing with integers and missing values mixed together. If a column contains both missing values and integers, the data type would still be float instead of int. When you export the table, you can add?float_format=‘%.0f’?to round all the floats to integers. Use this trick if you only want integer outputs for all columns?—?you’ll get rid of all annoying ‘.0’s.

指定加載的數據類型

比如說整數 默認是int64,指定數據類型為int8,可以讓數據大大減少;(在數據量非常大的時候非常有用)?

總結

以上是生活随笔為你收集整理的11 Python Pandas tricks that make your work more efficient的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 青草精品视频 | 大肉大捧一进一出好爽视频动漫 | 潘金莲一级淫片免费放动漫 | 精品一区二区三区视频在线观看 | 性做久久久久久久久 | 国产资源免费 | 久久五月综合 | 国产1区2区在线观看 | 色综合久久久久无码专区 | 日韩免费av一区二区 | 麻豆影视| 高清av免费观看 | 久久综合国产 | 久久久情 | 自拍偷拍亚洲图片 | 尤物视频官网 | 国产乱码精品1区2区3区 | 国产日韩一区 | 一区二区三区国产av | 婷婷深爱五月 | 99免费在线视频 | 性视频一区 | 喷水在线观看 | 影音先锋制服丝袜 | 国内精品视频一区二区三区 | 欧美日皮视频 | 久久国产网 | 性高潮久久久久久久久久 | 中文字字幕第183页 欧美特级一级片 | 久久精品在线视频 | 日韩毛片免费观看 | h片观看 | 玖草在线 | 亚洲三级成人 | 国语一区二区 | 9999精品视频 | 91色片| 男女日批视频 | 精品一区二区成人免费视频 | 不卡一二三 | 美女精品网站 | 干欧美| aaaaa黄色片 天堂网在线观看 | 色婷婷六月天 | 在线不卡欧美 | 国产精品女人精品久久久天天 | 视频区小说区图片区 | 香蕉精品在线 | 91丨九色丨国产在线 | 国产成人一区在线观看 | 中文在线观看免费视频 | 少妇无套高潮一二三区 | 91高清免费视频 | 日日夜夜影院 | 天天视频亚洲 | 亚洲字幕在线观看 | www.av在线播放 | 一级女人毛片 | 色婷婷aⅴ| 日韩av网站在线 | 大肉大捧一进一出视频 | 中文幕无线码中文字夫妻 | 日韩色网 | 一区二区日韩精品 | 又大又粗又爽18禁免费看 | 免费成人深夜小野草 | 岛国av一区二区三区 | 免费人成又黄又爽又色 | 久久免费毛片 | 日本亚洲综合 | 中国女人内精69xxxxxx | 国产免费自拍视频 | 欧美高清精品 | 日本少妇吞精囗交视频 | 丝袜调教91porn| 国产免费一区二区三区 | 91麻豆产精品久久久久久 | 视频一区二区在线播放 | 少妇中文字幕 | 91婷婷色 | 风流老熟女一区二区三区 | 国产毛片a级 | 99精品国产成人一区二区 | 97在线公开视频 | 欧美精品乱人伦久久久久久 | 中文字幕一区视频 | 女裸全身无奶罩内裤内衣内裤 | 在线视频免费观看 | 爽妇网av | 色小姐在线视频 | 激情伊人网 | 91系列在线观看 | 国产一区二区视频免费 | 性高潮久久久久久 | 成人在线亚洲 | 国精品无码一区二区三区 | 国产亚洲在线观看 | 国产精品久久精品三级 | 闫嫩的18sex少妇hd |