日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

tensorflow dataset.shuffle dataset.batch dataset.repeat 理解 注意点

發布時間:2025/3/19 编程问答 32 豆豆
生活随笔 收集整理的這篇文章主要介紹了 tensorflow dataset.shuffle dataset.batch dataset.repeat 理解 注意点 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

batch很好理解,就是batch size。注意在一個epoch中最后一個batch大小可能小于等于batch size?
dataset.repeat就是俗稱epoch,但在tf中與dataset.shuffle的使用順序可能會導致個epoch的混合?
dataset.shuffle就是說維持一個buffer size 大小的 shuffle buffer,圖中所需的每個樣本從shuffle buffer中獲取,取得一個樣本后,就從源數據集中加入一個樣本到shuffle buffer中。

import os
os.environ['CUDA_VISIBLE_DEVICES'] = ""
import numpy as np
import tensorflow as tf
np.random.seed(0)
x = np.random.sample((11,2))
# make a dataset from a numpy array
print(x)
print()
dataset = tf.data.Dataset.from_tensor_slices(x)
dataset = dataset.shuffle(3)
dataset = dataset.batch(4)
dataset = dataset.repeat(2)

# create the iterator
iter = dataset.make_one_shot_iterator()
el = iter.get_next()

with tf.Session() as sess:
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))

#源數據集
[[ 0.5488135 ? 0.71518937]
?[ 0.60276338 ?0.54488318]
?[ 0.4236548 ? 0.64589411]
?[ 0.43758721 ?0.891773 ?]
?[ 0.96366276 ?0.38344152]
?[ 0.79172504 ?0.52889492]
?[ 0.56804456 ?0.92559664]
?[ 0.07103606 ?0.0871293 ]
?[ 0.0202184 ? 0.83261985]
?[ 0.77815675 ?0.87001215]
?[ 0.97861834 ?0.79915856]]

# 通過shuffle batch后取得的樣本
[[ 0.4236548 ? 0.64589411]
?[ 0.60276338 ?0.54488318]
?[ 0.43758721 ?0.891773 ?]
?[ 0.5488135 ? 0.71518937]]
[[ 0.96366276 ?0.38344152]
?[ 0.56804456 ?0.92559664]
?[ 0.0202184 ? 0.83261985]
?[ 0.79172504 ?0.52889492]]
[[ 0.07103606 ?0.0871293 ]
?[ 0.97861834 ?0.79915856]
?[ 0.77815675 ?0.87001215]] ?#最后一個batch樣本個數為3
[[ 0.60276338 ?0.54488318]
?[ 0.5488135 ? 0.71518937]
?[ 0.43758721 ?0.891773 ?]
?[ 0.79172504 ?0.52889492]]
[[ 0.4236548 ? 0.64589411]
?[ 0.56804456 ?0.92559664]
?[ 0.0202184 ? 0.83261985]
?[ 0.07103606 ?0.0871293 ]]
[[ 0.77815675 ?0.87001215]
?[ 0.96366276 ?0.38344152]
?[ 0.97861834 ?0.79915856]] #最后一個batch樣本個數為3

1、按照shuffle中設置的buffer size,首先從源數據集取得三個樣本:?
shuffle buffer:?
[ 0.5488135 0.71518937]?
[ 0.60276338 0.54488318]?
[ 0.4236548 0.64589411]?
2、從buffer中取一個樣本到batch中得:?
shuffle buffer:?
[ 0.5488135 0.71518937]?
[ 0.60276338 0.54488318]?
batch:?
[ 0.4236548 0.64589411]?
3、shuffle buffer不足三個樣本,從源數據集提取一個樣本:?
shuffle buffer:?
[ 0.5488135 0.71518937]?
[ 0.60276338 0.54488318]?
[ 0.43758721 0.891773 ]?
4、從buffer中取一個樣本到batch中得:?
shuffle buffer:?
[ 0.5488135 0.71518937]?
[ 0.43758721 0.891773 ]?
batch:?
[ 0.4236548 0.64589411]?
[ 0.60276338 0.54488318]?
5、如此反復。這就意味中如果shuffle 的buffer size=1,數據集不打亂。如果shuffle 的buffer size=數據集樣本數量,隨機打亂整個數據集

import os
os.environ['CUDA_VISIBLE_DEVICES'] = ""
import numpy as np
import tensorflow as tf
np.random.seed(0)
x = np.random.sample((11,2))
# make a dataset from a numpy array
print(x)
print()
dataset = tf.data.Dataset.from_tensor_slices(x)
dataset = dataset.shuffle(1)
dataset = dataset.batch(4)
dataset = dataset.repeat(2)

# create the iterator
iter = dataset.make_one_shot_iterator()
el = iter.get_next()

with tf.Session() as sess:
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))

[[ 0.5488135 ? 0.71518937]
?[ 0.60276338 ?0.54488318]
?[ 0.4236548 ? 0.64589411]
?[ 0.43758721 ?0.891773 ?]
?[ 0.96366276 ?0.38344152]
?[ 0.79172504 ?0.52889492]
?[ 0.56804456 ?0.92559664]
?[ 0.07103606 ?0.0871293 ]
?[ 0.0202184 ? 0.83261985]
?[ 0.77815675 ?0.87001215]
?[ 0.97861834 ?0.79915856]]

[[ 0.5488135 ? 0.71518937]
?[ 0.60276338 ?0.54488318]
?[ 0.4236548 ? 0.64589411]
?[ 0.43758721 ?0.891773 ?]]
[[ 0.96366276 ?0.38344152]
?[ 0.79172504 ?0.52889492]
?[ 0.56804456 ?0.92559664]
?[ 0.07103606 ?0.0871293 ]]
[[ 0.0202184 ? 0.83261985]
?[ 0.77815675 ?0.87001215]
?[ 0.97861834 ?0.79915856]]
[[ 0.5488135 ? 0.71518937]
?[ 0.60276338 ?0.54488318]
?[ 0.4236548 ? 0.64589411]
?[ 0.43758721 ?0.891773 ?]]
[[ 0.96366276 ?0.38344152]
?[ 0.79172504 ?0.52889492]
?[ 0.56804456 ?0.92559664]
?[ 0.07103606 ?0.0871293 ]]
[[ 0.0202184 ? 0.83261985]
?[ 0.77815675 ?0.87001215]
?[ 0.97861834 ?0.79915856]]

注意如果repeat在shuffle之前使用:?
官方說repeat在shuffle之前使用能提高性能,但模糊了數據樣本的epoch關系

import os
os.environ['CUDA_VISIBLE_DEVICES'] = ""
import numpy as np
import tensorflow as tf
np.random.seed(0)
x = np.random.sample((11,2))
# make a dataset from a numpy array
print(x)
print()
dataset = tf.data.Dataset.from_tensor_slices(x)
dataset = dataset.repeat(2)
dataset = dataset.shuffle(11)
dataset = dataset.batch(4)

# create the iterator
iter = dataset.make_one_shot_iterator()
el = iter.get_next()

with tf.Session() as sess:
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))
? ? print(sess.run(el))

[[ 0.5488135 ? 0.71518937]
?[ 0.60276338 ?0.54488318]
?[ 0.4236548 ? 0.64589411]
?[ 0.43758721 ?0.891773 ?]
?[ 0.96366276 ?0.38344152]
?[ 0.79172504 ?0.52889492]
?[ 0.56804456 ?0.92559664]
?[ 0.07103606 ?0.0871293 ]
?[ 0.0202184 ? 0.83261985]
?[ 0.77815675 ?0.87001215]
?[ 0.97861834 ?0.79915856]]

[[ 0.56804456 ?0.92559664]
?[ 0.5488135 ? 0.71518937]
?[ 0.60276338 ?0.54488318]
?[ 0.07103606 ?0.0871293 ]]
[[ 0.96366276 ?0.38344152]
?[ 0.43758721 ?0.891773 ?]
?[ 0.43758721 ?0.891773 ?]
?[ 0.77815675 ?0.87001215]]
[[ 0.79172504 ?0.52889492] ? #出現相同樣本出現在同一個batch中
?[ 0.79172504 ?0.52889492]
?[ 0.60276338 ?0.54488318]
?[ 0.4236548 ? 0.64589411]]
[[ 0.07103606 ?0.0871293 ]
?[ 0.4236548 ? 0.64589411]
?[ 0.96366276 ?0.38344152]
?[ 0.5488135 ? 0.71518937]]
[[ 0.97861834 ?0.79915856]
?[ 0.0202184 ? 0.83261985]
?[ 0.77815675 ?0.87001215]
?[ 0.56804456 ?0.92559664]]
[[ 0.0202184 ? 0.83261985]
?[ 0.97861834 ?0.79915856]] ? ? ? ? ?#可以看到最后個batch為2,而前面都是4 ? ?

使用案例:
def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
? ? print('Parsing', filenames)
? ? def decode_libsvm(line):
? ? ? ? #columns = tf.decode_csv(value, record_defaults=CSV_COLUMN_DEFAULTS)
? ? ? ? #features = dict(zip(CSV_COLUMNS, columns))
? ? ? ? #labels = features.pop(LABEL_COLUMN)
? ? ? ? columns = tf.string_split([line], ' ')
? ? ? ? labels = tf.string_to_number(columns.values[0], out_type=tf.float32)
? ? ? ? splits = tf.string_split(columns.values[1:], ':')
? ? ? ? id_vals = tf.reshape(splits.values,splits.dense_shape)
? ? ? ? feat_ids, feat_vals = tf.split(id_vals,num_or_size_splits=2,axis=1)
? ? ? ? feat_ids = tf.string_to_number(feat_ids, out_type=tf.int32)
? ? ? ? feat_vals = tf.string_to_number(feat_vals, out_type=tf.float32)
? ? ? ? #feat_ids = tf.reshape(feat_ids,shape=[-1,FLAGS.field_size])
? ? ? ? #for i in range(splits.dense_shape.eval()[0]):
? ? ? ? # ? ?feat_ids.append(tf.string_to_number(splits.values[2*i], out_type=tf.int32))
? ? ? ? # ? ?feat_vals.append(tf.string_to_number(splits.values[2*i+1]))
? ? ? ? #return tf.reshape(feat_ids,shape=[-1,field_size]), tf.reshape(feat_vals,shape=[-1,field_size]), labels
? ? ? ? return {"feat_ids": feat_ids, "feat_vals": feat_vals}, labels

? ? # Extract lines from input files using the Dataset API, can pass one filename or filename list
? ? dataset = tf.data.TextLineDataset(filenames).map(decode_libsvm, num_parallel_calls=10).prefetch(500000) ? ?# multi-thread pre-process then prefetch

? ? # Randomizes input using a window of 256 elements (read into memory)
? ? if perform_shuffle:
? ? ? ? dataset = dataset.shuffle(buffer_size=256)

? ? # epochs from blending together.
? ? dataset = dataset.repeat(num_epochs)
? ? dataset = dataset.batch(batch_size) # Batch size to use

? ? #return dataset.make_one_shot_iterator()
? ? iterator = dataset.make_one_shot_iterator()
? ? batch_features, batch_labels = iterator.get_next()
? ? #return tf.reshape(batch_ids,shape=[-1,field_size]), tf.reshape(batch_vals,shape=[-1,field_size]), batch_labels
? ? return batch_features, batch_labels

?

?

個人初步實驗證明:如果? repeat()中采用默認參數,其值epoch為無窮大
---------------------?
作者:青盞?
來源:CSDN?
原文:https://blog.csdn.net/qq_16234613/article/details/81703228?
版權聲明:本文為博主原創文章,轉載請附上博文鏈接!

與50位技術專家面對面20年技術見證,附贈技術全景圖

總結

以上是生活随笔為你收集整理的tensorflow dataset.shuffle dataset.batch dataset.repeat 理解 注意点的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 黑人性视频| 成人免费一区二区三区在线观看 | 日韩黄色一区二区 | 91肉色超薄丝袜脚交一区二区 | 亚洲国产大片 | 草草久久久无码国产专区 | 中文字幕人妻熟女在线 | 久久国产精品毛片 | 麻豆国产一区 | 久久激情免费视频 | 天堂av官网| 国产精品主播 | 国产又粗又猛又爽又黄91 | 国产精品12p | 欧美美女色图 | 天天视频入口 | 国产一级内谢 | 精品人妻天天爽夜夜爽视频 | 久久国产精品无码网站 | 免费av一级 | 久久综合精品国产二区无码不卡 | 永久免费在线看片 | www.在线观看网站 | 噜噜色av| 亚洲做受高潮无遮挡 | 欧美黄色精品 | 在线二区 | 男人日女人网站 | 特大黑人巨人吊xxxx | 精品一级少妇久久久久久久 | 亚洲大逼 | 在线免费视频你懂的 | 免费av网址在线 | 成年人免费视频观看 | 最近免费中文字幕中文高清百度 | 久久男女 | 中文字幕 人妻熟女 | 天堂在线视频免费 | 大奶一区 | 色香色香欲天天天影视综合网 | 九色91视频| 亚洲第一毛片 | 自拍偷拍麻豆 | 色婷婷国产精品 | 亚洲精品一区二区在线观看 | 精品国产黄色片 | 丁香免费视频 | www.av日韩| 亚洲综合伊人久久 | 96在线视频 | 91爱爱爱爱| 毛片网站大全 | 九热视频在线观看 | 色a在线| 久久无码国产视频 | 18做爰免费视频网站 | 女人夜夜春 | 丁香花高清在线 | av地址在线 | 日韩一级视频在线观看 | 黄色亚洲精品 | www.五月天婷婷 | 伊人久久久久噜噜噜亚洲熟女综合 | 色涩涩| 99久久免费看精品国产一区 | 人体私拍套图hdxxxx | 今天最新中文字幕mv高清 | 欧美激情网站 | 国产av无码专区亚洲a∨毛片 | 亚洲av激情无码专区在线播放 | 中文在线字幕免费观 | 国产系列精品av | 国产乱人乱偷精品视频a人人澡 | 狠狠五月天 | 穿越异世荒淫h啪肉np文 | 99久久精品国产成人一区二区 | 美女脱得一干二净 | 在线久| 精品无码久久久久久久久久 | 成人国产精品蜜柚视频 | 久久国产精品影院 | 国产99re | 中文字幕一区二区三区又粗 | 亚洲第一视频在线观看 | 91噜噜噜| 午夜激情视频在线观看 | 欧美精品一区二区三 | 亚洲中文字幕久久无码 | 日韩a级大片 | 蜜桃av色偷偷av老熟女 | av大片免费观看 | 女人久久久久 | 亚洲日日夜夜 | 久草视频国产 | 国产麻豆免费观看 | 日本美女视频 | 亚洲精品v天堂中文字幕 | 国产尤物在线视频 | 好男人www日本|