日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人工智能 > pytorch >内容正文

pytorch

【每周论文推荐】 初入深度学习CV领域必读的几篇文章

發布時間:2025/3/20 pytorch 24 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【每周论文推荐】 初入深度学习CV领域必读的几篇文章 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

很多朋友都希望我們開通論文推薦和閱讀板塊,那就開吧,此專欄名為《每周論文推薦》。在這個專欄里,還是本著有三AI一貫的原則,專注于讓大家能夠系統性完成學習,所以我們推薦的文章也必定是同一主題的。

網絡模型作為深度學習的幾大核心問題之一,今天就給初入深度學習CV領域的朋友推薦一些必讀的文章,相信讀完這些文章之后,大家對這個主題會有更深刻的體會。

作者&編輯 | 言有三

1 視覺機制的研究

這篇文章是對視覺機制的重要研究,由現代視覺科學之父,諾貝爾生理學與醫學獎獲得者,加拿大神經生理學家 David Hunter Hubel 和瑞典神經科學家 Torsten Nils Wiesel所寫,是CNN的啟蒙。


文章引用量:13000+

推薦指數:?????

[1] Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[J]. The Journal of physiology, 1962, 160(1): 106-154.

2 第一個圖像CNN網絡

1980 年日本 NHK 技術研究所的研究員福島邦彥提出了Neocognitron網絡,這是第一個真正意義上的多層級聯神經網絡,與當前的卷積神經網絡結構非常相似,可以認為是卷積神經網絡的起源


文章引用量:3000+

推薦指數:?????

[2] Fukushima K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological cybernetics, 1980, 36(4): 193-202.

3 LeNet5

從1989年開始紐約大學的Yann LeCun等人開始認真研究卷積神經網絡,并提出了LeNets網絡系列,迭代了近10年,從LeNet1直到大家最為熟悉的LeNet5誕生。這是卷積神經網絡真正商用化的開始,也是反向傳播理論大放異彩的開始,可稱之為卷積神經網絡的Hello World


文章引用量:19000+

推薦指數:?????

[3] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.

4 深度學習啟蒙

2006年Geoffrey Everest Hinton等人在《Science》雜志上發表文章《reducing the dimensionality of data with neural networks》,提出了參數逐層初始化的DBN網絡的訓練,一般被認為是“深度學習”的啟蒙

文章引用量:9000+

推薦指數:?????

[4] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. science, 2006, 313(5786): 504-507.

5 深度學習里程碑

2012年,在圖像領域中具有里程碑意義的ImageNet競賽中,Geoffrey Hinton的學生Alex Krizhevsky提出了 AlexNet,憑借若干優秀的工程技巧一舉奪魁遠超對手,意味著深度學習強勢誕生

文章引用量:43000+

推薦指數:?????

[5] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.

6 CNN可視化

2013年Hinton的學生Matthew D. Zeiler和Rob Fergus 在論文“Visualizing andUnderstanding Convolutional Networks”中提出了zfnet,他們利用反卷積技術對CNN進行了可視化,詳細探討了CNN的分層抽象學習能力


文章引用量:6000+

推薦指數:?????

[6] Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[C]//European conference on computer vision. Springer, Cham, 2014: 818-833.

7 CNN重要基準模型

2014年牛津大學視覺組在論文“very deep convolutional networks for large-scale image recognition”中提出了VGGNet,分別在ImageNet的定位和分類任務中取得第一名和第二名,以簡單的工程技巧成為了至今仍然被廣泛使用的baseline

文章引用量:24000+

推薦指數:?????

[7] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.

8 1*1卷積

這只是一個將普通卷積核半徑變為1的卷積方式,卻影響了之后幾乎所有的模型,將這個1×1的特殊卷積用于通道的降維和升維,已經成為模型設計不可缺少的組件。


文章引用量:4000+

推薦指數:?????

[8] Lin M, Chen Q, Yan S. Network in network[J]. arXiv preprint arXiv:1312.4400, 2013.

9 Inception機制

在VGG網絡不能再通過加深得到進一步性能突破的時候,Inception模型(又名GoogLeNet)使用了擁有不同感受野并行的多分支Inception結構,進一步加深了網絡深度并成為當年的基準模型。


文章引用量:14000+

推薦指數:?????

[9] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9.

除了以上文章,還有幾篇文章推薦大家也去閱讀,包括第一個語音CNN網絡[10],小卷積的機制研究[11]等。

[10]?Waibel A, Hanazawa T, Hinton G, et al. Phoneme recognition using time-delay neural networks[J]. Backpropagation: Theory, Architectures and Applications, 1995: 35-61.

[11]?Ciresan D C, Meier U, Masci J, et al. Flexible, high performance convolutional neural networks for image classification[C]//Twenty-Second International Joint Conference on Artificial Intelligence. 2011.

10 如何獲取文章與交流

找到有三AI開源項目即可獲取。

https://github.com/longpeng2008/yousan.ai

文章細節眾多,閱讀交流在有三AI知識星球中進行,感興趣可以加入。

總結

以上就是CNN發展早期的一些重要論文,下一期我們將推薦殘差網絡結構相關的研究。

有三AI夏季劃

有三AI夏季劃進行中,歡迎了解并加入,系統性成長為中級CV算法工程師。

有三AI“夏季劃”出爐,今夏進階中級CV算法工程師

轉載文章請后臺聯系

侵權必究

往期精選

  • 【完結】深度學習CV算法工程師從入門到初級面試有多遠,大概是25篇文章的距離

  • 【完結】優秀的深度學習從業者都有哪些優秀的習慣

  • 【完結】給新手的12大深度學習開源框架快速入門項目

  • 【完結】總結12大CNN主流模型架構設計思想

  • 【知乎直播】千奇百怪的CNN網絡架構等你來

  • 【AI不惑境】數據壓榨有多狠,人工智能就有多成功

  • 【AI不惑境】網絡深度對深度學習模型性能有什么影響?

  • 【AI不惑境】網絡的寬度如何影響深度學習模型的性能?

  • 【AI不惑境】學習率和batchsize如何影響模型的性能?

  • 【AI不惑境】殘差網絡的前世今生與原理

  • 【AI不惑境】移動端高效網絡,卷積拆分和分組的精髓

  • 【AI不惑境】深度學習中的多尺度模型設計

與50位技術專家面對面20年技術見證,附贈技術全景圖

總結

以上是生活随笔為你收集整理的【每周论文推荐】 初入深度学习CV领域必读的几篇文章的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。