日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

完成U-net细胞分割的一些准备

發布時間:2025/3/20 编程问答 27 豆豆
生活随笔 收集整理的這篇文章主要介紹了 完成U-net细胞分割的一些准备 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
#使用本地上傳文件 from google.colab import files uploaded = files.upload() for fn in uploaded.keys():print('User uploaded file "{name}" with length {length} bytes'.format(name=fn, length=len(uploaded[fn]))) #刪除文件以及文件夾 import os import shutilpath='../source_file_clxiao/'#os.remove(path) #刪除文件 #os.removedirs(path) #刪除空文件夾#shutil.rmtree(path) #遞歸刪除文件夾 #CV2圖像顯示 from google.colab.patches import cv2_imshow !curl -o logo.png https://colab.research.google.com/img/colab_favicon_256px.png import cv2 img = cv2.imread('logo.png', cv2.IMREAD_UNCHANGED) cv2_imshow(img) #文件上傳加文件讀取 from google.colab import files import cv2 uploaded = files.upload() ii=0 for fn in uploaded.keys():input=cv2.imread(fn)ii=ii+1 #圖片讀取加圖像擴增from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_imgdatagen = ImageDataGenerator(rotation_range=1,width_shift_range=0.2,height_shift_range=0.2,shear_range=0.6,zoom_range=0.6,horizontal_flip=True,fill_mode='nearest')img = load_img('test_1.tif') # this is a PIL imagex = img_to_array(img) # this is a Numpy array with shape (3, 150, 150)x = x.reshape((1,) + x.shape) # this is a Numpy array with shape (1, 3, 150, 150)# the .flow() command below generates batches of randomly transformed images# and saves the results to the `preview/` directoryi = 0import matplotlib.pyplot as pltfrom PIL import Imagelist=datagen.flow(x, batch_size=4,save_to_dir='test_1/', save_prefix='test_1_', save_format='tif')#print(list.size)for batch in list:i += 1if i > 5:break # otherwise the generator would loop indefinitelyprint(batch.size)#plt.imshow(batch)#cv2.WaitKey(20)

?

總結

以上是生活随笔為你收集整理的完成U-net细胞分割的一些准备的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。