日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人工智能 > pytorch >内容正文

pytorch

DL框架之MXNet :深度学习框架之MXNet 的简介、安装、使用方法、应用案例之详细攻略

發布時間:2025/3/21 pytorch 24 豆豆
生活随笔 收集整理的這篇文章主要介紹了 DL框架之MXNet :深度学习框架之MXNet 的简介、安装、使用方法、应用案例之详细攻略 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

DL框架之MXNet :深度學習框架之MXNet 的簡介、安裝、使用方法、應用案例之詳細攻略

?

目錄

MXNet 的簡介

1、優缺點

2、相關文章

3、相關鏈接

MXNet 的安裝

MXNet 的使用方法

1、個人使用總結

2、經典模型集合—MXNet Model Zoo

3、模型分類

MXNet 的應用案例


?

?

MXNet 的簡介

? ? ? ? A flexible and efficient library for deep learning.
  MXNet 是亞馬遜(Amazon)選擇的深度學習庫,并且也許是最優秀的庫之一。它擁有類似于 Theano 和 TensorFlow 的數據流圖,為多 GPU 配置提供了良好的配置,有著類似于 Lasagne 和 Blocks 更高級別的模型構建塊,并且可以在你可以想象的任何硬件上運行(包括手機)。對 Python 的支持只是其冰山一角—MXNet 同樣提供了對 R、Julia、C++、Scala、Matlab,和 Javascript 的接口。
? ? ? ? MXNet 是一個旨在提高效率和靈活性的深度學習框架。像MXNet這樣的加速庫提供了強大的工具來幫助開發人員利用GPU和云計算的全部功能。雖然這些工具通常適用于任何數學計算,但MXNet特別強調加速大規模深度神經網絡的開發和部署。特別是,我們提供以下功能:

  • 設備放置:使用MXNet,可以輕松指定每個數據結構的生存位置。
  • 多GPU培訓:MXNet可以通過可用GPU的數量輕松擴展計算。
  • 自動區分:MXNet自動執行曾經陷入神經網絡研究的衍生計算。
  • 優化的預定義圖層:雖然您可以在MXNet中編寫自己的圖層,但預定義的圖層會針對速度進行優化,優于競爭庫。

? ? ? ? MXNet 官方自我評價:MXNet結合了高性能,干凈的代碼,高級API訪問和低級控制,是深度學習框架中獨一無二的選擇。

1、優缺點

優點

  • 速度的標桿
  • 靈活的編程模型:非常靈活。支持命令式和符號式編程模型以最大化效率和性能。
  • 從云端到客戶端可移植:可運行于多CPU、多GPU、集群、服務器、工作站甚至移動智能手機。
  • 多語言支持:支持七種主流編程語言,包括C++、Python、R、Scala、Julia、Matlab和JavaScript。事實上,它是唯一支持所有 R 函數的構架。
  • 本地分布式訓練:支持在多CPU/GPU設備上的分布式訓練,使其可充分利用云計算的規模優勢。
  • 性能優化:使用一個優化的C++后端引擎并行I/O和計算,無論使用哪種語言都能達到最佳性能。
  • 云端友好,可直接與S3,HDFS和Azure兼容
  • 缺點

  • 最小的社區
  • 比 Theano 學習更困難一點
  • ?

    2、相關文章

    MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems


    ? ? ? ? MXnet是一個多語言機器學習(ML)庫,用于簡化ML算法的開發,特別是對于深度神經網絡。它嵌入在宿主語言中,將聲明性符號表達式與命令式張量計算混合在一起。它提供自動微分來推導梯度。MXnet具有計算和內存效率高的特點,可以在各種異構系統上運行,從移動設備到分布式GPU集群。本文介紹了MXnet的API設計和系統實現,并解釋了如何統一處理符號表達式和張量操作的嵌入。我們的初步實驗表明,在使用多個GPU機器的大規模深度神經網絡應用中,有著很好的結果。

    ?

    3、相關鏈接

    官網地址:http://mxnet.incubator.apache.org/
    GitHub地址01:https://github.com/dmlc/mxnet
    GitHub地址02:https://github.com/apache/incubator-mxnet/tree/master/example
    MXNet - Python API:http://mxnet.incubator.apache.org/api/python/index.html#python-api-reference
    PyPi地址:https://pypi.org/project/mxnet/
    ?

    ?

    MXNet 的安裝

    1、第一次安裝

    pip install mxnet

    Collecting mxnetDownloading https://files.pythonhosted.org/packages/d1/b6/38d9ab1b16c456224823e737f1bb95fe3ff056f3834fba01cd157d59b574/mxnet-1.4.0.post0-py2.py3-none-win_amd64.whl (21.9MB)100% |████████████████████████████████| 21.9MB 34kB/s Requirement already satisfied: requests<2.19.0,>=2.18.4 in f:\program files\python\python36\lib\site-packages (from mxnet) (2.18.4) Collecting graphviz<0.9.0,>=0.8.1 (from mxnet)Downloading https://files.pythonhosted.org/packages/53/39/4ab213673844e0c004bed8a0781a0721a3f6bb23eb8854ee75c236428892/graphviz-0.8.4-py2.py3-none-any.whl Collecting numpy<1.15.0,>=1.8.2 (from mxnet)Downloading https://files.pythonhosted.org/packages/dc/99/f824a73251589d9fcef2384f9dd21bd1601597fda92ced5882940586ec37/numpy-1.14.6-cp36-none-win_amd64.whl (13.4MB)100% |████████████████████████████████| 13.4MB 30kB/s Requirement already satisfied: certifi>=2017.4.17 in f:\program files\python\python36\lib\site-packages (from requests<2.19.0,>=2.18.4->mxnet) (2018.1.18) Requirement already satisfied: chardet<3.1.0,>=3.0.2 in f:\program files\python\python36\lib\site-packages (from requests<2.19.0,>=2.18.4->mxnet) (3.0.4) Requirement already satisfied: urllib3<1.23,>=1.21.1 in f:\program files\python\python36\lib\site-packages (from requests<2.19.0,>=2.18.4->mxnet) (1.22) Requirement already satisfied: idna<2.7,>=2.5 in f:\program files\python\python36\lib\site-packages (from requests<2.19.0,>=2.18.4->mxnet) (2.6)tensorflow-gpu 1.4.0 requires enum34>=1.1.6, which is not installed. tensorflow 1.10.0 has requirement numpy<=1.14.5,>=1.13.3, but you'll have numpy 1.14.6 which is incompatible. moviepy 0.2.3.2 has requirement decorator==4.0.11, but you'll have decorator 4.3.0 which is incompatible. moviepy 0.2.3.2 has requirement tqdm==4.11.2, but you'll have tqdm 4.25.0 which is incompatible. Installing collected packages: graphviz, numpy, mxnetFound existing installation: numpy 1.15.0rc1+mklUninstalling numpy-1.15.0rc1+mkl: Could not install packages due to an EnvironmentError: [WinError 5] 拒絕訪問。: 'f:\\program files\\python\\python36\\lib\\site-packages\\numpy\\core\\_multiarray_tests.cp36-win_amd64.pyd' Consider using the `--user` option or check the permissions.

    遇到問題:成功解決Could not install packages due to an EnvironmentError: [WinError 5] 拒絕訪問。: 'f:\\program files\\p

    2、第二次安裝

    tensorflow-gpu 1.4.0 requires enum34>=1.1.6, which is not installed. tensorflow 1.10.0 has requirement numpy<=1.14.5,>=1.13.3, but you'll have numpy 1.14.6 which is incompatible. moviepy 0.2.3.2 has requirement decorator==4.0.11, but you'll have decorator 4.3.0 which is incompatible. moviepy 0.2.3.2 has requirement tqdm==4.11.2, but you'll have tqdm 4.25.0 which is incompatible.

    ?

    MXNet 的使用方法

    后期更新……

    1、個人使用總結

    DL框架之MXNet :深度學習框架之MXNet 常見使用方法(個人使用)總結之詳細攻略

    ?

    ?

    ?

    相關鏈接:http://mxnet.incubator.apache.org/versions/master/api/python/gluon/model_zoo.html

    2、經典模型集合—MXNet Model Zoo

    AliasNetwork# ParametersTop-1 AccuracyTop-5 AccuracyOrigin
    alexnetAlexNet61,100,8400.54920.7803Converted from pytorch vision
    densenet121DenseNet-1218,062,5040.74970.9225Converted from pytorch vision
    densenet161DenseNet-16128,900,9360.77700.9380Converted from pytorch vision
    densenet169DenseNet-16914,307,8800.76170.9317Converted from pytorch vision
    densenet201DenseNet-20120,242,9840.77320.9362Converted from pytorch vision
    inceptionv3Inception V3 299x29923,869,0000.77550.9364Converted from pytorch vision
    mobilenet0.25MobileNet 0.25475,5440.51850.7608Trained with?script
    mobilenet0.5MobileNet 0.51,342,5360.63070.8475Trained with?script
    mobilenet0.75MobileNet 0.752,601,9760.67380.8782Trained with?script
    mobilenet1.0MobileNet 1.04,253,8640.71050.9006Trained with?script
    mobilenetv2_1.0MobileNetV2 1.03,539,1360.71920.9056Trained with?script
    mobilenetv2_0.75MobileNetV2 0.752,653,8640.69610.8895Trained with?script
    mobilenetv2_0.5MobileNetV2 0.51,983,1040.64490.8547Trained with?script
    mobilenetv2_0.25MobileNetV2 0.251,526,8560.50740.7456Trained with?script
    resnet18_v1ResNet-18 V111,699,1120.70930.8992Trained with?script
    resnet34_v1ResNet-34 V121,814,6960.74370.9187Trained with?script
    resnet50_v1ResNet-50 V125,629,0320.76470.9313Trained with?script
    resnet101_v1ResNet-101 V144,695,1440.78340.9401Trained with?script
    resnet152_v1ResNet-152 V160,404,0720.79000.9438Trained with?script
    resnet18_v2ResNet-18 V211,695,7960.71000.8992Trained with?script
    resnet34_v2ResNet-34 V221,811,3800.74400.9208Trained with?script
    resnet50_v2ResNet-50 V225,595,0600.77110.9343Trained with?script
    resnet101_v2ResNet-101 V244,639,4120.78530.9417Trained with?script
    resnet152_v2ResNet-152 V260,329,1400.79210.9431Trained with?script
    squeezenet1.0SqueezeNet 1.01,248,4240.56110.7909Converted from pytorch vision
    squeezenet1.1SqueezeNet 1.11,235,4960.54960.7817Converted from pytorch vision
    vgg11VGG-11132,863,3360.66620.8734Converted from pytorch vision
    vgg13VGG-13133,047,8480.67740.8811Converted from pytorch vision
    vgg16VGG-16138,357,5440.73230.9132Trained with?script
    vgg19VGG-19143,667,2400.74110.9135Trained with?script
    vgg11_bnVGG-11 with batch normalization132,874,3440.68590.8872Converted from pytorch vision
    vgg13_bnVGG-13 with batch normalization133,059,6240.68840.8882Converted from pytorch vision
    vgg16_bnVGG-16 with batch normalization138,374,4400.73100.9176Trained with?script
    vgg19_bnVGG-19 with batch normalization143,689,2560.74330.9185Trained with?script
    get_modelReturns a pre-defined model by name

    3、模型分類

    ResNet

    resnet18_v1ResNet-18 V1 model from?“Deep Residual Learning for Image Recognition”?paper.
    resnet34_v1ResNet-34 V1 model from?“Deep Residual Learning for Image Recognition”?paper.
    resnet50_v1ResNet-50 V1 model from?“Deep Residual Learning for Image Recognition”?paper.
    resnet101_v1ResNet-101 V1 model from?“Deep Residual Learning for Image Recognition”?paper.
    resnet152_v1ResNet-152 V1 model from?“Deep Residual Learning for Image Recognition”?paper.
    resnet18_v2ResNet-18 V2 model from?“Identity Mappings in Deep Residual Networks”?paper.
    resnet34_v2ResNet-34 V2 model from?“Identity Mappings in Deep Residual Networks”?paper.
    resnet50_v2ResNet-50 V2 model from?“Identity Mappings in Deep Residual Networks”?paper.
    resnet101_v2ResNet-101 V2 model from?“Identity Mappings in Deep Residual Networks”?paper.
    resnet152_v2ResNet-152 V2 model from?“Identity Mappings in Deep Residual Networks”?paper.
    ResNetV1ResNet V1 model from?“Deep Residual Learning for Image Recognition”?paper.
    ResNetV2ResNet V2 model from?“Identity Mappings in Deep Residual Networks”?paper.
    BasicBlockV1BasicBlock V1 from?“Deep Residual Learning for Image Recognition”?paper.
    BasicBlockV2BasicBlock V2 from?“Identity Mappings in Deep Residual Networks”?paper.
    BottleneckV1Bottleneck V1 from?“Deep Residual Learning for Image Recognition”?paper.
    BottleneckV2Bottleneck V2 from?“Identity Mappings in Deep Residual Networks”?paper.
    get_resnetResNet V1 model from?“Deep Residual Learning for Image Recognition”?paper.

    VGG

    vgg11VGG-11 model from the?“Very Deep Convolutional Networks for Large-Scale Image Recognition”?paper.
    vgg13VGG-13 model from the?“Very Deep Convolutional Networks for Large-Scale Image Recognition”?paper.
    vgg16VGG-16 model from the?“Very Deep Convolutional Networks for Large-Scale Image Recognition”?paper.
    vgg19VGG-19 model from the?“Very Deep Convolutional Networks for Large-Scale Image Recognition”?paper.
    vgg11_bnVGG-11 model with batch normalization from the?“Very Deep Convolutional Networks for Large-Scale Image Recognition”?paper.
    vgg13_bnVGG-13 model with batch normalization from the?“Very Deep Convolutional Networks for Large-Scale Image Recognition”?paper.
    vgg16_bnVGG-16 model with batch normalization from the?“Very Deep Convolutional Networks for Large-Scale Image Recognition”?paper.
    vgg19_bnVGG-19 model with batch normalization from the?“Very Deep Convolutional Networks for Large-Scale Image Recognition”?paper.
    VGGVGG model from the?“Very Deep Convolutional Networks for Large-Scale Image Recognition”?paper.
    get_vggVGG model from the?“Very Deep Convolutional Networks for Large-Scale Image Recognition”?paper.

    Alexnet

    alexnetAlexNet model from the?“One weird trick...”?paper.
    AlexNetAlexNet model from the?“One weird trick...”?paper.

    DenseNet

    densenet121Densenet-BC 121-layer model from the?“Densely Connected Convolutional Networks”?paper.
    densenet161Densenet-BC 161-layer model from the?“Densely Connected Convolutional Networks”?paper.
    densenet169Densenet-BC 169-layer model from the?“Densely Connected Convolutional Networks”?paper.
    densenet201Densenet-BC 201-layer model from the?“Densely Connected Convolutional Networks”?paper.
    DenseNetDensenet-BC model from the?“Densely Connected Convolutional Networks”?paper.

    SqueezeNet

    squeezenet1_0SqueezeNet 1.0 model from the?“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size”?paper.
    squeezenet1_1SqueezeNet 1.1 model from the?official SqueezeNet repo.
    SqueezeNetSqueezeNet model from the?“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size”?paper.

    Inception

    inception_v3Inception v3 model from?“Rethinking the Inception Architecture for Computer Vision”?paper.
    Inception3Inception v3 model from?“Rethinking the Inception Architecture for Computer Vision”?paper.

    MobileNet

    mobilenet1_0MobileNet model from the?“MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”?paper, with width multiplier 1.0.
    mobilenet0_75MobileNet model from the?“MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”?paper, with width multiplier 0.75.
    mobilenet0_5MobileNet model from the?“MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”?paper, with width multiplier 0.5.
    mobilenet0_25MobileNet model from the?“MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”?paper, with width multiplier 0.25.
    mobilenet_v2_1_0MobileNetV2 model from the?“Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation”?paper.
    mobilenet_v2_0_75MobileNetV2 model from the?“Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation”?paper.
    mobilenet_v2_0_5MobileNetV2 model from the?“Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation”?paper.
    mobilenet_v2_0_25MobileNetV2 model from the?“Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation”?paper.
    MobileNetMobileNet model from the?“MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”?paper.
    MobileNetV2MobileNetV2 model from the?“Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation”?paper.

    ?

    ?

    MXNet 的應用案例

    后期繼續更新……

    ?

    ?

    ?

    ?

    ?

    ?

    《新程序員》:云原生和全面數字化實踐50位技術專家共同創作,文字、視頻、音頻交互閱讀

    總結

    以上是生活随笔為你收集整理的DL框架之MXNet :深度学习框架之MXNet 的简介、安装、使用方法、应用案例之详细攻略的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。