DL框架之MXNet :深度学习框架之MXNet 的简介、安装、使用方法、应用案例之详细攻略
DL框架之MXNet :深度學習框架之MXNet 的簡介、安裝、使用方法、應用案例之詳細攻略
?
目錄
MXNet 的簡介
1、優缺點
2、相關文章
3、相關鏈接
MXNet 的安裝
MXNet 的使用方法
1、個人使用總結
2、經典模型集合—MXNet Model Zoo
3、模型分類
MXNet 的應用案例
?
?
MXNet 的簡介
? ? ? ? A flexible and efficient library for deep learning.
MXNet 是亞馬遜(Amazon)選擇的深度學習庫,并且也許是最優秀的庫之一。它擁有類似于 Theano 和 TensorFlow 的數據流圖,為多 GPU 配置提供了良好的配置,有著類似于 Lasagne 和 Blocks 更高級別的模型構建塊,并且可以在你可以想象的任何硬件上運行(包括手機)。對 Python 的支持只是其冰山一角—MXNet 同樣提供了對 R、Julia、C++、Scala、Matlab,和 Javascript 的接口。
? ? ? ? MXNet 是一個旨在提高效率和靈活性的深度學習框架。像MXNet這樣的加速庫提供了強大的工具來幫助開發人員利用GPU和云計算的全部功能。雖然這些工具通常適用于任何數學計算,但MXNet特別強調加速大規模深度神經網絡的開發和部署。特別是,我們提供以下功能:
- 設備放置:使用MXNet,可以輕松指定每個數據結構的生存位置。
- 多GPU培訓:MXNet可以通過可用GPU的數量輕松擴展計算。
- 自動區分:MXNet自動執行曾經陷入神經網絡研究的衍生計算。
- 優化的預定義圖層:雖然您可以在MXNet中編寫自己的圖層,但預定義的圖層會針對速度進行優化,優于競爭庫。
? ? ? ? MXNet 官方自我評價:MXNet結合了高性能,干凈的代碼,高級API訪問和低級控制,是深度學習框架中獨一無二的選擇。
1、優缺點
優點:
缺點:
?
2、相關文章
MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems
? ? ? ? MXnet是一個多語言機器學習(ML)庫,用于簡化ML算法的開發,特別是對于深度神經網絡。它嵌入在宿主語言中,將聲明性符號表達式與命令式張量計算混合在一起。它提供自動微分來推導梯度。MXnet具有計算和內存效率高的特點,可以在各種異構系統上運行,從移動設備到分布式GPU集群。本文介紹了MXnet的API設計和系統實現,并解釋了如何統一處理符號表達式和張量操作的嵌入。我們的初步實驗表明,在使用多個GPU機器的大規模深度神經網絡應用中,有著很好的結果。
?
3、相關鏈接
官網地址:http://mxnet.incubator.apache.org/
GitHub地址01:https://github.com/dmlc/mxnet
GitHub地址02:https://github.com/apache/incubator-mxnet/tree/master/example
MXNet - Python API:http://mxnet.incubator.apache.org/api/python/index.html#python-api-reference
PyPi地址:https://pypi.org/project/mxnet/
?
?
MXNet 的安裝
1、第一次安裝
pip install mxnet
Collecting mxnetDownloading https://files.pythonhosted.org/packages/d1/b6/38d9ab1b16c456224823e737f1bb95fe3ff056f3834fba01cd157d59b574/mxnet-1.4.0.post0-py2.py3-none-win_amd64.whl (21.9MB)100% |████████████████████████████████| 21.9MB 34kB/s Requirement already satisfied: requests<2.19.0,>=2.18.4 in f:\program files\python\python36\lib\site-packages (from mxnet) (2.18.4) Collecting graphviz<0.9.0,>=0.8.1 (from mxnet)Downloading https://files.pythonhosted.org/packages/53/39/4ab213673844e0c004bed8a0781a0721a3f6bb23eb8854ee75c236428892/graphviz-0.8.4-py2.py3-none-any.whl Collecting numpy<1.15.0,>=1.8.2 (from mxnet)Downloading https://files.pythonhosted.org/packages/dc/99/f824a73251589d9fcef2384f9dd21bd1601597fda92ced5882940586ec37/numpy-1.14.6-cp36-none-win_amd64.whl (13.4MB)100% |████████████████████████████████| 13.4MB 30kB/s Requirement already satisfied: certifi>=2017.4.17 in f:\program files\python\python36\lib\site-packages (from requests<2.19.0,>=2.18.4->mxnet) (2018.1.18) Requirement already satisfied: chardet<3.1.0,>=3.0.2 in f:\program files\python\python36\lib\site-packages (from requests<2.19.0,>=2.18.4->mxnet) (3.0.4) Requirement already satisfied: urllib3<1.23,>=1.21.1 in f:\program files\python\python36\lib\site-packages (from requests<2.19.0,>=2.18.4->mxnet) (1.22) Requirement already satisfied: idna<2.7,>=2.5 in f:\program files\python\python36\lib\site-packages (from requests<2.19.0,>=2.18.4->mxnet) (2.6)tensorflow-gpu 1.4.0 requires enum34>=1.1.6, which is not installed. tensorflow 1.10.0 has requirement numpy<=1.14.5,>=1.13.3, but you'll have numpy 1.14.6 which is incompatible. moviepy 0.2.3.2 has requirement decorator==4.0.11, but you'll have decorator 4.3.0 which is incompatible. moviepy 0.2.3.2 has requirement tqdm==4.11.2, but you'll have tqdm 4.25.0 which is incompatible. Installing collected packages: graphviz, numpy, mxnetFound existing installation: numpy 1.15.0rc1+mklUninstalling numpy-1.15.0rc1+mkl: Could not install packages due to an EnvironmentError: [WinError 5] 拒絕訪問。: 'f:\\program files\\python\\python36\\lib\\site-packages\\numpy\\core\\_multiarray_tests.cp36-win_amd64.pyd' Consider using the `--user` option or check the permissions.遇到問題:成功解決Could not install packages due to an EnvironmentError: [WinError 5] 拒絕訪問。: 'f:\\program files\\p
2、第二次安裝
tensorflow-gpu 1.4.0 requires enum34>=1.1.6, which is not installed. tensorflow 1.10.0 has requirement numpy<=1.14.5,>=1.13.3, but you'll have numpy 1.14.6 which is incompatible. moviepy 0.2.3.2 has requirement decorator==4.0.11, but you'll have decorator 4.3.0 which is incompatible. moviepy 0.2.3.2 has requirement tqdm==4.11.2, but you'll have tqdm 4.25.0 which is incompatible.?
MXNet 的使用方法
后期更新……
1、個人使用總結
DL框架之MXNet :深度學習框架之MXNet 常見使用方法(個人使用)總結之詳細攻略
?
?
?
相關鏈接:http://mxnet.incubator.apache.org/versions/master/api/python/gluon/model_zoo.html
2、經典模型集合—MXNet Model Zoo
| alexnet | AlexNet | 61,100,840 | 0.5492 | 0.7803 | Converted from pytorch vision |
| densenet121 | DenseNet-121 | 8,062,504 | 0.7497 | 0.9225 | Converted from pytorch vision |
| densenet161 | DenseNet-161 | 28,900,936 | 0.7770 | 0.9380 | Converted from pytorch vision |
| densenet169 | DenseNet-169 | 14,307,880 | 0.7617 | 0.9317 | Converted from pytorch vision |
| densenet201 | DenseNet-201 | 20,242,984 | 0.7732 | 0.9362 | Converted from pytorch vision |
| inceptionv3 | Inception V3 299x299 | 23,869,000 | 0.7755 | 0.9364 | Converted from pytorch vision |
| mobilenet0.25 | MobileNet 0.25 | 475,544 | 0.5185 | 0.7608 | Trained with?script |
| mobilenet0.5 | MobileNet 0.5 | 1,342,536 | 0.6307 | 0.8475 | Trained with?script |
| mobilenet0.75 | MobileNet 0.75 | 2,601,976 | 0.6738 | 0.8782 | Trained with?script |
| mobilenet1.0 | MobileNet 1.0 | 4,253,864 | 0.7105 | 0.9006 | Trained with?script |
| mobilenetv2_1.0 | MobileNetV2 1.0 | 3,539,136 | 0.7192 | 0.9056 | Trained with?script |
| mobilenetv2_0.75 | MobileNetV2 0.75 | 2,653,864 | 0.6961 | 0.8895 | Trained with?script |
| mobilenetv2_0.5 | MobileNetV2 0.5 | 1,983,104 | 0.6449 | 0.8547 | Trained with?script |
| mobilenetv2_0.25 | MobileNetV2 0.25 | 1,526,856 | 0.5074 | 0.7456 | Trained with?script |
| resnet18_v1 | ResNet-18 V1 | 11,699,112 | 0.7093 | 0.8992 | Trained with?script |
| resnet34_v1 | ResNet-34 V1 | 21,814,696 | 0.7437 | 0.9187 | Trained with?script |
| resnet50_v1 | ResNet-50 V1 | 25,629,032 | 0.7647 | 0.9313 | Trained with?script |
| resnet101_v1 | ResNet-101 V1 | 44,695,144 | 0.7834 | 0.9401 | Trained with?script |
| resnet152_v1 | ResNet-152 V1 | 60,404,072 | 0.7900 | 0.9438 | Trained with?script |
| resnet18_v2 | ResNet-18 V2 | 11,695,796 | 0.7100 | 0.8992 | Trained with?script |
| resnet34_v2 | ResNet-34 V2 | 21,811,380 | 0.7440 | 0.9208 | Trained with?script |
| resnet50_v2 | ResNet-50 V2 | 25,595,060 | 0.7711 | 0.9343 | Trained with?script |
| resnet101_v2 | ResNet-101 V2 | 44,639,412 | 0.7853 | 0.9417 | Trained with?script |
| resnet152_v2 | ResNet-152 V2 | 60,329,140 | 0.7921 | 0.9431 | Trained with?script |
| squeezenet1.0 | SqueezeNet 1.0 | 1,248,424 | 0.5611 | 0.7909 | Converted from pytorch vision |
| squeezenet1.1 | SqueezeNet 1.1 | 1,235,496 | 0.5496 | 0.7817 | Converted from pytorch vision |
| vgg11 | VGG-11 | 132,863,336 | 0.6662 | 0.8734 | Converted from pytorch vision |
| vgg13 | VGG-13 | 133,047,848 | 0.6774 | 0.8811 | Converted from pytorch vision |
| vgg16 | VGG-16 | 138,357,544 | 0.7323 | 0.9132 | Trained with?script |
| vgg19 | VGG-19 | 143,667,240 | 0.7411 | 0.9135 | Trained with?script |
| vgg11_bn | VGG-11 with batch normalization | 132,874,344 | 0.6859 | 0.8872 | Converted from pytorch vision |
| vgg13_bn | VGG-13 with batch normalization | 133,059,624 | 0.6884 | 0.8882 | Converted from pytorch vision |
| vgg16_bn | VGG-16 with batch normalization | 138,374,440 | 0.7310 | 0.9176 | Trained with?script |
| vgg19_bn | VGG-19 with batch normalization | 143,689,256 | 0.7433 | 0.9185 | Trained with?script |
| get_model | Returns a pre-defined model by name |
3、模型分類
ResNet
| resnet18_v1 | ResNet-18 V1 model from?“Deep Residual Learning for Image Recognition”?paper. |
| resnet34_v1 | ResNet-34 V1 model from?“Deep Residual Learning for Image Recognition”?paper. |
| resnet50_v1 | ResNet-50 V1 model from?“Deep Residual Learning for Image Recognition”?paper. |
| resnet101_v1 | ResNet-101 V1 model from?“Deep Residual Learning for Image Recognition”?paper. |
| resnet152_v1 | ResNet-152 V1 model from?“Deep Residual Learning for Image Recognition”?paper. |
| resnet18_v2 | ResNet-18 V2 model from?“Identity Mappings in Deep Residual Networks”?paper. |
| resnet34_v2 | ResNet-34 V2 model from?“Identity Mappings in Deep Residual Networks”?paper. |
| resnet50_v2 | ResNet-50 V2 model from?“Identity Mappings in Deep Residual Networks”?paper. |
| resnet101_v2 | ResNet-101 V2 model from?“Identity Mappings in Deep Residual Networks”?paper. |
| resnet152_v2 | ResNet-152 V2 model from?“Identity Mappings in Deep Residual Networks”?paper. |
| ResNetV1 | ResNet V1 model from?“Deep Residual Learning for Image Recognition”?paper. |
| ResNetV2 | ResNet V2 model from?“Identity Mappings in Deep Residual Networks”?paper. |
| BasicBlockV1 | BasicBlock V1 from?“Deep Residual Learning for Image Recognition”?paper. |
| BasicBlockV2 | BasicBlock V2 from?“Identity Mappings in Deep Residual Networks”?paper. |
| BottleneckV1 | Bottleneck V1 from?“Deep Residual Learning for Image Recognition”?paper. |
| BottleneckV2 | Bottleneck V2 from?“Identity Mappings in Deep Residual Networks”?paper. |
| get_resnet | ResNet V1 model from?“Deep Residual Learning for Image Recognition”?paper. |
VGG
| vgg11 | VGG-11 model from the?“Very Deep Convolutional Networks for Large-Scale Image Recognition”?paper. |
| vgg13 | VGG-13 model from the?“Very Deep Convolutional Networks for Large-Scale Image Recognition”?paper. |
| vgg16 | VGG-16 model from the?“Very Deep Convolutional Networks for Large-Scale Image Recognition”?paper. |
| vgg19 | VGG-19 model from the?“Very Deep Convolutional Networks for Large-Scale Image Recognition”?paper. |
| vgg11_bn | VGG-11 model with batch normalization from the?“Very Deep Convolutional Networks for Large-Scale Image Recognition”?paper. |
| vgg13_bn | VGG-13 model with batch normalization from the?“Very Deep Convolutional Networks for Large-Scale Image Recognition”?paper. |
| vgg16_bn | VGG-16 model with batch normalization from the?“Very Deep Convolutional Networks for Large-Scale Image Recognition”?paper. |
| vgg19_bn | VGG-19 model with batch normalization from the?“Very Deep Convolutional Networks for Large-Scale Image Recognition”?paper. |
| VGG | VGG model from the?“Very Deep Convolutional Networks for Large-Scale Image Recognition”?paper. |
| get_vgg | VGG model from the?“Very Deep Convolutional Networks for Large-Scale Image Recognition”?paper. |
Alexnet
| alexnet | AlexNet model from the?“One weird trick...”?paper. |
| AlexNet | AlexNet model from the?“One weird trick...”?paper. |
DenseNet
| densenet121 | Densenet-BC 121-layer model from the?“Densely Connected Convolutional Networks”?paper. |
| densenet161 | Densenet-BC 161-layer model from the?“Densely Connected Convolutional Networks”?paper. |
| densenet169 | Densenet-BC 169-layer model from the?“Densely Connected Convolutional Networks”?paper. |
| densenet201 | Densenet-BC 201-layer model from the?“Densely Connected Convolutional Networks”?paper. |
| DenseNet | Densenet-BC model from the?“Densely Connected Convolutional Networks”?paper. |
SqueezeNet
| squeezenet1_0 | SqueezeNet 1.0 model from the?“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size”?paper. |
| squeezenet1_1 | SqueezeNet 1.1 model from the?official SqueezeNet repo. |
| SqueezeNet | SqueezeNet model from the?“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size”?paper. |
Inception
| inception_v3 | Inception v3 model from?“Rethinking the Inception Architecture for Computer Vision”?paper. |
| Inception3 | Inception v3 model from?“Rethinking the Inception Architecture for Computer Vision”?paper. |
MobileNet
| mobilenet1_0 | MobileNet model from the?“MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”?paper, with width multiplier 1.0. |
| mobilenet0_75 | MobileNet model from the?“MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”?paper, with width multiplier 0.75. |
| mobilenet0_5 | MobileNet model from the?“MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”?paper, with width multiplier 0.5. |
| mobilenet0_25 | MobileNet model from the?“MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”?paper, with width multiplier 0.25. |
| mobilenet_v2_1_0 | MobileNetV2 model from the?“Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation”?paper. |
| mobilenet_v2_0_75 | MobileNetV2 model from the?“Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation”?paper. |
| mobilenet_v2_0_5 | MobileNetV2 model from the?“Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation”?paper. |
| mobilenet_v2_0_25 | MobileNetV2 model from the?“Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation”?paper. |
| MobileNet | MobileNet model from the?“MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”?paper. |
| MobileNetV2 | MobileNetV2 model from the?“Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation”?paper. |
?
?
MXNet 的應用案例
后期繼續更新……
?
?
?
?
?
?
《新程序員》:云原生和全面數字化實踐50位技術專家共同創作,文字、視頻、音頻交互閱讀總結
以上是生活随笔為你收集整理的DL框架之MXNet :深度学习框架之MXNet 的简介、安装、使用方法、应用案例之详细攻略的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: DL之DNN优化技术:神经网络算法简介之
- 下一篇: 梳理百年深度学习发展史-七月在线机器学习