日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

TF之CNN:CNN实现mnist数据集预测 96%采用placeholder用法+2层C及其max_pool法+隐藏层dropout法+输出层softmax法+目标函数cross_entropy法+

發布時間:2025/3/21 编程问答 17 豆豆
生活随笔 收集整理的這篇文章主要介紹了 TF之CNN:CNN实现mnist数据集预测 96%采用placeholder用法+2层C及其max_pool法+隐藏层dropout法+输出层softmax法+目标函数cross_entropy法+ 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

TF:TF下CNN實現mnist數據集預測 96%采用placeholder用法+2層C及其max_pool法+隱藏層dropout法+輸出層softmax法+目標函數cross_entropy法+AdamOptimizer算法

?

目錄

輸出結果

代碼設計


?

?

?

輸出結果

后期更新……

?

代碼設計

import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # number 1 to 10 data mnist = input_data.read_data_sets('MNIST_data', one_hot=True)def compute_accuracy(v_xs, v_ys):global predictiony_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})return resultdef weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial)def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')xs = tf.placeholder(tf.float32, [None, 784]) # 28x28 ys = tf.placeholder(tf.float32, [None, 10]) keep_prob = tf.placeholder(tf.float32) x_image = tf.reshape(xs, [-1, 28, 28, 1]) ## conv1 layer; W_conv1 = weight_variable([5,5, 1,32]) b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5,5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([7*7*64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) # the error between prediction and real data cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),reduction_indices=[1])) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) sess = tf.Session() # important step sess.run(tf.global_variables_initializer())for i in range(10): batch_xs, batch_ys = mnist.train.next_batch(100)sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5}) if i % 50 == 0:print(compute_accuracy(mnist.test.images, mnist.test.labels))

?

?

?

相關文章
TF:TF下CNN實現mnist數據集預測 96%采用placeholder用法+2層C及其max_pool法+隱藏層dropout法+輸出層softmax法+目標函數cross_entropy法+AdamOptimizer算法
?

總結

以上是生活随笔為你收集整理的TF之CNN:CNN实现mnist数据集预测 96%采用placeholder用法+2层C及其max_pool法+隐藏层dropout法+输出层softmax法+目标函数cross_entropy法+的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。