TF之CNN:CNN实现mnist数据集预测 96%采用placeholder用法+2层C及其max_pool法+隐藏层dropout法+输出层softmax法+目标函数cross_entropy法+
生活随笔
收集整理的這篇文章主要介紹了
TF之CNN:CNN实现mnist数据集预测 96%采用placeholder用法+2层C及其max_pool法+隐藏层dropout法+输出层softmax法+目标函数cross_entropy法+
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
TF:TF下CNN實現mnist數據集預測 96%采用placeholder用法+2層C及其max_pool法+隱藏層dropout法+輸出層softmax法+目標函數cross_entropy法+AdamOptimizer算法
?
目錄
輸出結果
代碼設計
?
?
?
輸出結果
后期更新……
?
代碼設計
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # number 1 to 10 data mnist = input_data.read_data_sets('MNIST_data', one_hot=True)def compute_accuracy(v_xs, v_ys):global predictiony_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})return resultdef weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial)def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')xs = tf.placeholder(tf.float32, [None, 784]) # 28x28 ys = tf.placeholder(tf.float32, [None, 10]) keep_prob = tf.placeholder(tf.float32) x_image = tf.reshape(xs, [-1, 28, 28, 1]) ## conv1 layer; W_conv1 = weight_variable([5,5, 1,32]) b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5,5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([7*7*64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) # the error between prediction and real data cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),reduction_indices=[1])) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) sess = tf.Session() # important step sess.run(tf.global_variables_initializer())for i in range(10): batch_xs, batch_ys = mnist.train.next_batch(100)sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5}) if i % 50 == 0:print(compute_accuracy(mnist.test.images, mnist.test.labels))?
?
?
相關文章
TF:TF下CNN實現mnist數據集預測 96%采用placeholder用法+2層C及其max_pool法+隱藏層dropout法+輸出層softmax法+目標函數cross_entropy法+AdamOptimizer算法
?
總結
以上是生活随笔為你收集整理的TF之CNN:CNN实现mnist数据集预测 96%采用placeholder用法+2层C及其max_pool法+隐藏层dropout法+输出层softmax法+目标函数cross_entropy法+的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: TF之CNN:利用sklearn(自带手
- 下一篇: TF:利用TF的train.Saver将