日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 运维知识 > windows >内容正文

windows

TF之NN:利用神经网络系统自动学习散点(二次函数+noise+优化修正)输出结果可视化(matplotlib动态演示)

發布時間:2025/3/21 windows 22 豆豆
生活随笔 收集整理的這篇文章主要介紹了 TF之NN:利用神经网络系统自动学习散点(二次函数+noise+优化修正)输出结果可视化(matplotlib动态演示) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

TF之NN:利用神經網絡系統自動學習散點(二次函數+noise+優化修正)輸出結果可視化(matplotlib動態演示)

?

?

?

目錄

輸出結果

代碼設計


?

?

?

?

輸出結果

?

代碼設計

import tensorflow as tf import numpy as np import matplotlib.pyplot as pltdef add_layer(inputs, in_size, out_size, activation_function=None): Weights = tf.Variable(tf.random_normal([in_size, out_size])) biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None: outputs = Wx_plus_belse: outputs = activation_function(Wx_plus_b)return outputsx_data = np.linspace(-1,1,300)[:, np.newaxis] noise = np.random.normal(0, 0.05, x_data.shape) y_data = np.square(x_data) - 0.5 + noise # define placeholder for inputs to network xs = tf.placeholder(tf.float32, [None, 1]) ys = tf.placeholder(tf.float32, [None, 1])l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu) prediction = add_layer(l1, 10, 1, activation_function=None)# the error between prediciton and real data loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),reduction_indices=[1])) train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) # important step init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) # plot the real data fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.scatter(x_data, y_data) plt.ion() plt.show()for i in range(1000): # trainingsess.run(train_step, feed_dict={xs: x_data, ys: y_data}) if i % 50 == 0: # to visualize the result and improvementtry:ax.lines.remove(lines[0])except Exception:passprediction_value = sess.run(prediction, feed_dict={xs: x_data})# plot the predictionlines = ax.plot(x_data, prediction_value, 'r-', lw=5)plt.title('Matplotlib,NN,Efficient learning,Approach,Quadratic function --Jason Niu')plt.pause(0.1)

?

?

?

相關文章
TF之NN:matplotlib動態演示深度學習之tensorflow將神經網絡系統自動學習散點(二次函數+noise)并優化修正并且將輸出結果可視化

總結

以上是生活随笔為你收集整理的TF之NN:利用神经网络系统自动学习散点(二次函数+noise+优化修正)输出结果可视化(matplotlib动态演示)的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: www国产成人 | 国产传媒中文字幕 | 久久久噜噜噜久久久 | 亚洲在线看片 | 性欧美日韩 | 修女也疯狂3免费观看完整版 | 69精品丰满人妻无码视频a片 | 日日躁夜夜躁狠狠躁 | 囯产精品一品二区三区 | 亚洲做受高潮 | 久久久91视频 | 麻豆网站免费看 | 99热99在线 | 夜夜躁日日躁狠狠久久av | 亚洲国产av一区二区 | 99视频久久| 深夜影院深a | 国产麻豆久久 | 日本一区二区免费高清视频 | 欧美亚洲国产精品 | 东方av在线免费观看 | 成人av免费在线播放 | 亚洲高清视频免费观看 | 亚洲男人第一天堂 | 九一在线视频 | 免费高清黄色 | 啪啪.com| 国产精品麻豆欧美日韩ww | av猫咪 | 国产福利在线导航 | a天堂资源 | 国产精品一区在线 | 韩国jizz| 露出调教羞耻91九色 | 午夜你懂的 | 亚洲熟妇av乱码在线观看 | 六月丁香激情综合 | 一区二区播放 | 黑人操亚洲女人 | 色女孩综合 | 国产精品免费看久久久无码 | 人人妻人人澡人人爽精品欧美一区 | 欧美日韩免费 | 黄色天堂av| 免费在线看黄网址 | 色狠狠av老熟女 | 精品国产www| 精品一性一色一乱农村 | 国产一级做a爰片久久毛片男男 | 日韩欧美国产高清91 | 日韩欧美综合视频 | 女18毛片| 38激情 | 日本韩国欧美一区二区三区 | 在线一二区 | 一本大道久久精品 | 五十路妻| 国产日产亚洲系列最新 | 好吊色在线观看 | 1024手机看片日韩 | 国产精品久久久久久亚洲av | 黄色在线观看视频网站 | h片免费网站 | 朴麦妮原版视频高清资源 | 国产免费观看av | 青青久操 | 人妻精品久久久久中文 | 69视频在线播放 | 特级西西人体444www高清 | 岛国精品在线播放 | 久久久888| 秋霞免费av| 国产精品变态另类虐交 | 天天综合天天添夜夜添狠狠添 | 男人激烈吮乳吃奶爽文 | 18国产免费视频 | 国产东北露脸精品视频 | 北条麻妃一二三区 | 欧美精品一区二区三 | 西野翔之公侵犯中文字幕 | 神马午夜视频 | 婷婷一级片| 免费性情网站 | 久久婷婷一区 | 欧美在线资源 | 国产黄色一级片 | 激情福利在线 | www.欧美在线观看 | 看了下面会湿的视频 | 国产黄色在线网站 | 视频二区欧美 | 亚洲高清久久久 | 国产高中女学生第一次 | 人妻av无码一区二区三区 | 西野翔之公侵犯中文字幕 | 久久av一区二区三 | 国产免费无码XXXXX视频 | 日韩一区二区三区高清 | 91视频免费网址 |